Yulang Jiang, Dengcheng Hui, Ziyang Pan, Yongxin Yu, Lu Liu, Xiaofan Yu, Chao Wu, Mingyu Sun
{"title":"Curcumin promotes ferroptosis in hepatocellular carcinoma via upregulation of ACSL4.","authors":"Yulang Jiang, Dengcheng Hui, Ziyang Pan, Yongxin Yu, Lu Liu, Xiaofan Yu, Chao Wu, Mingyu Sun","doi":"10.1007/s00432-024-05878-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ferroptosis, a novel iron-ion-dependent metabolic cell death mode with lipid peroxides as the main driving substrate, plays an irreplaceable role in the development and preventive treatment of hepatocellular carcinoma. Curcumin has potent pharmacological anti-tumor effects.</p><p><strong>Aim of the study: </strong>We aimed to evaluate the ex vivo and in vivo cancer inhibitory activity of curcumin and its specific mechanism of action.</p><p><strong>Materials and methods: </strong>We used the hepatocellular carcinoma cell lines HepG2 and SMMC7721 to assess the direct inhibition of hepatocellular carcinoma proliferation by curcumin in vitro and a tumor xenograft model to evaluate the in vivo cancer inhibitory effect of curcumin.</p><p><strong>Results: </strong>In this study, we found that ferroptosis's inhibitors specifically reversed the curcumin-induced cell death pattern in HCC. After curcumin intervention, there was a substantial increase in MDA levels and iron ion levels, and a decrease in intracellular GSH levels. Meanwhile, the expression of GPX4 and SLC7A11 was significantly reduced at the protein levels, while ACSL4 and PTGS2 expression was significantly increased.</p><p><strong>Conclusions: </strong>This study showed that curcumin significantly decreased the proliferation of HCC cells and significantly increased the sensitivity of ferroptosis. These results suggest that ACSL4 is a viable target for curcumin-induced ferroptosis in treating HCC.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"150 9","pages":"429"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05878-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ferroptosis, a novel iron-ion-dependent metabolic cell death mode with lipid peroxides as the main driving substrate, plays an irreplaceable role in the development and preventive treatment of hepatocellular carcinoma. Curcumin has potent pharmacological anti-tumor effects.
Aim of the study: We aimed to evaluate the ex vivo and in vivo cancer inhibitory activity of curcumin and its specific mechanism of action.
Materials and methods: We used the hepatocellular carcinoma cell lines HepG2 and SMMC7721 to assess the direct inhibition of hepatocellular carcinoma proliferation by curcumin in vitro and a tumor xenograft model to evaluate the in vivo cancer inhibitory effect of curcumin.
Results: In this study, we found that ferroptosis's inhibitors specifically reversed the curcumin-induced cell death pattern in HCC. After curcumin intervention, there was a substantial increase in MDA levels and iron ion levels, and a decrease in intracellular GSH levels. Meanwhile, the expression of GPX4 and SLC7A11 was significantly reduced at the protein levels, while ACSL4 and PTGS2 expression was significantly increased.
Conclusions: This study showed that curcumin significantly decreased the proliferation of HCC cells and significantly increased the sensitivity of ferroptosis. These results suggest that ACSL4 is a viable target for curcumin-induced ferroptosis in treating HCC.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.