Yang Xu , Shaoliang Lyu , Xin Luo , Fortunatus Masanja , Yuewen Deng , Liqiang Zhao
{"title":"Elucidating maternal provisioning for bivalve larvae under ocean acidity extreme events","authors":"Yang Xu , Shaoliang Lyu , Xin Luo , Fortunatus Masanja , Yuewen Deng , Liqiang Zhao","doi":"10.1016/j.marenvres.2024.106752","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean acidity extreme (OAX) events, triggered by climate change and anthropogenic activities, are projected to become more intense and frequent in coastal ecosystems, devastating marine bivalves and ecosystems they support. Maternal effects adaptively modulate offspring performance in response to climatic stressors, but whether and to what extent they can confer offspring resistance to OAX remain largely unknown. Here, we investigated impacts of OAX on the parental and larval lipidomes of Manila clams (<em>Ruditapes philippinarum</em>) to add further insights into the energetic nature of maternal effects. A total of 177 significantly down-regulated lipid components (categorized into glycerolipids mainly) were shown in OAX-stressed adults compared with those reared under ambient conditions, and following parental conditioning, larvae also exhibited a further decreasing down-regulation of the glycerolipid components. Triacylglycerols were identified as the predominant composition of glycerolipids and the primary sources of energy for gonadal maturation and larvae development. Yet, larvae spawn from adults exposed to OAX had significantly lower contents of triacylglycerols than those without a prior history of parental conditioning, with the carbon chain length and unsaturation degree of the triacylglycerol components being significantly affected. The latter was also in line with significant increases in the production of triacylglycerol byproducts (diacylglycerols). Overall, our findings suggest that when OAX prevailed during reproductive seasons of Manila clams, maternal effects could be maladaptive by depressing the energetic deposition of larvae, and may not be a potential adaptive modulator of marine bivalves to cope with unprecedented environmental change.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106752"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004136","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean acidity extreme (OAX) events, triggered by climate change and anthropogenic activities, are projected to become more intense and frequent in coastal ecosystems, devastating marine bivalves and ecosystems they support. Maternal effects adaptively modulate offspring performance in response to climatic stressors, but whether and to what extent they can confer offspring resistance to OAX remain largely unknown. Here, we investigated impacts of OAX on the parental and larval lipidomes of Manila clams (Ruditapes philippinarum) to add further insights into the energetic nature of maternal effects. A total of 177 significantly down-regulated lipid components (categorized into glycerolipids mainly) were shown in OAX-stressed adults compared with those reared under ambient conditions, and following parental conditioning, larvae also exhibited a further decreasing down-regulation of the glycerolipid components. Triacylglycerols were identified as the predominant composition of glycerolipids and the primary sources of energy for gonadal maturation and larvae development. Yet, larvae spawn from adults exposed to OAX had significantly lower contents of triacylglycerols than those without a prior history of parental conditioning, with the carbon chain length and unsaturation degree of the triacylglycerol components being significantly affected. The latter was also in line with significant increases in the production of triacylglycerol byproducts (diacylglycerols). Overall, our findings suggest that when OAX prevailed during reproductive seasons of Manila clams, maternal effects could be maladaptive by depressing the energetic deposition of larvae, and may not be a potential adaptive modulator of marine bivalves to cope with unprecedented environmental change.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.