Yang Li, Sheng Xu, Thomas H Loeber, Edgar J D Vredenbregt
{"title":"Rubidium and Cesium Ion-Induced Electron and Ion Signals for Scanning Ion Microscopy Applications.","authors":"Yang Li, Sheng Xu, Thomas H Loeber, Edgar J D Vredenbregt","doi":"10.1093/mam/ozae087","DOIUrl":null,"url":null,"abstract":"<p><p>Scanning ion microscopy applications of novel focused ion beam (FIB) systems based on ultracold rubidium (Rb) and cesium (Cs) atoms were investigated via ion-induced electron and ion yields. Results measured on the Rb+ and Cs+ FIB systems were compared with results from commercially available gallium (Ga+) FIB systems to verify the merits of applying Rb+ and Cs+ for imaging. The comparison shows that Rb+ and Cs+ have higher secondary electron (SE) yields on a variety of pure element targets than Ga+, which implies a higher signal-to-noise ratio can be achieved for the same dose in SE imaging using Rb+/Cs+ than Ga+. In addition, analysis of the ion-induced ion signals reveals that secondary ions dominate Cs+ induced ion signals while the Rb+/Ga+ induced signals contain more backscattered ions.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"817-824"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning ion microscopy applications of novel focused ion beam (FIB) systems based on ultracold rubidium (Rb) and cesium (Cs) atoms were investigated via ion-induced electron and ion yields. Results measured on the Rb+ and Cs+ FIB systems were compared with results from commercially available gallium (Ga+) FIB systems to verify the merits of applying Rb+ and Cs+ for imaging. The comparison shows that Rb+ and Cs+ have higher secondary electron (SE) yields on a variety of pure element targets than Ga+, which implies a higher signal-to-noise ratio can be achieved for the same dose in SE imaging using Rb+/Cs+ than Ga+. In addition, analysis of the ion-induced ion signals reveals that secondary ions dominate Cs+ induced ion signals while the Rb+/Ga+ induced signals contain more backscattered ions.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.