Atypical Mycobacterium abscessus BlaRI Ortholog Mediates Regulation of Energy Metabolism but Not β-Lactam Resistance.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Microbiology Pub Date : 2024-10-01 Epub Date: 2024-09-22 DOI:10.1111/mmi.15314
Lauren E Bonefont, Haley C Davenport, Catherine T Chaton, Konstantin V Korotkov, Kyle H Rohde
{"title":"Atypical Mycobacterium abscessus BlaRI Ortholog Mediates Regulation of Energy Metabolism but Not β-Lactam Resistance.","authors":"Lauren E Bonefont, Haley C Davenport, Catherine T Chaton, Konstantin V Korotkov, Kyle H Rohde","doi":"10.1111/mmi.15314","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium abscessus (Mab) is highly drug resistant, and understanding regulation of antibiotic resistance is critical to future antibiotic development. Regulatory mechanisms controlling Mab's β-lactamase (Bla<sub>Mab</sub>) that mediates β-lactam resistance remain unknown. S. aureus encodes a prototypical protease-mediated two-component system BlaRI regulating the β-lactamase BlaZ. BlaR binds extracellular β-lactams, activating an intracellular peptidase domain which cleaves BlaI to derepress blaZ. Mycobacterium tuberculosis (Mtb) encodes homologs of BlaRI (which we will denote as BlaIR to reflect the inverted gene order in mycobacteria) that regulate not only the Mtb β-lactamase, blaC, but also additional genes related to respiration. We identified orthologs of blaIR<sub>Mtb</sub> in Mab and hypothesized that they regulate bla<sub>Mab</sub>. Surprisingly, neither deletion of blaIR<sub>Mab</sub> nor overexpression of only blaI<sub>Mab</sub> altered bla<sub>Mab</sub> expression or β-lactam susceptibility. However, BlaI<sub>Mab</sub> did bind to conserved motifs upstream of several Mab genes involved in respiration, yielding a putative regulon that partially overlapped with BlaI<sub>Mtb</sub>. Prompted by evidence that respiration inhibitors including clofazimine induce the BlaI regulon in Mtb, we found that clofazimine triggers induction of blaIR<sub>Mab</sub> and its downstream regulon. Highlighting an important role for BlaIR<sub>Mab</sub> in adapting to disruptions in energy metabolism, constitutive repression of the BlaI<sub>Mab</sub> regulon rendered Mab highly susceptible to clofazimine. In addition to our unexpected findings that BlaIR<sub>Mab</sub> does not regulate β-lactam resistance, this study highlights the novel role of mycobacterial BlaRI-type regulators in regulating electron transport and respiration.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"583-597"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15314","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium abscessus (Mab) is highly drug resistant, and understanding regulation of antibiotic resistance is critical to future antibiotic development. Regulatory mechanisms controlling Mab's β-lactamase (BlaMab) that mediates β-lactam resistance remain unknown. S. aureus encodes a prototypical protease-mediated two-component system BlaRI regulating the β-lactamase BlaZ. BlaR binds extracellular β-lactams, activating an intracellular peptidase domain which cleaves BlaI to derepress blaZ. Mycobacterium tuberculosis (Mtb) encodes homologs of BlaRI (which we will denote as BlaIR to reflect the inverted gene order in mycobacteria) that regulate not only the Mtb β-lactamase, blaC, but also additional genes related to respiration. We identified orthologs of blaIRMtb in Mab and hypothesized that they regulate blaMab. Surprisingly, neither deletion of blaIRMab nor overexpression of only blaIMab altered blaMab expression or β-lactam susceptibility. However, BlaIMab did bind to conserved motifs upstream of several Mab genes involved in respiration, yielding a putative regulon that partially overlapped with BlaIMtb. Prompted by evidence that respiration inhibitors including clofazimine induce the BlaI regulon in Mtb, we found that clofazimine triggers induction of blaIRMab and its downstream regulon. Highlighting an important role for BlaIRMab in adapting to disruptions in energy metabolism, constitutive repression of the BlaIMab regulon rendered Mab highly susceptible to clofazimine. In addition to our unexpected findings that BlaIRMab does not regulate β-lactam resistance, this study highlights the novel role of mycobacterial BlaRI-type regulators in regulating electron transport and respiration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非典型脓肿分枝杆菌 BlaRI 同源物介导能量代谢调节而非β-内酰胺抗性。
脓肿分枝杆菌(Mab)具有很强的耐药性,了解抗生素耐药性的调控对未来抗生素的开发至关重要。控制脓肿分枝杆菌β-内酰胺酶(BlaMab)的调控机制仍是一个未知数。金黄色葡萄球菌编码一个典型的蛋白酶介导的双组分系统 BlaRI,该系统调节β-内酰胺酶 BlaZ。BlaR 与细胞外的β-内酰胺结合,激活细胞内的肽酶结构域,从而裂解 BlaI,解除对 BlaZ 的抑制。结核分枝杆菌(Mtb)编码 BlaRI 的同源物(我们将其命名为 BlaIR,以反映分枝杆菌中倒置的基因顺序),这些同源物不仅调控 Mtb β-内酰胺酶 blaC,还调控与呼吸有关的其他基因。我们在 Mab 中发现了 blaIRMtb 的直向同源物,并推测它们能调控 blaMab。令人惊讶的是,无论是删除 blaIRMab 还是仅过量表达 blaIMab,都不会改变 blaMab 的表达或对β-内酰胺类药物的敏感性。然而,BlaIMab 确实与涉及呼吸作用的几个 Mab 基因上游的保守基团结合,产生了一个与 BlaIMtb 部分重叠的推定调节子。有证据表明呼吸抑制剂(包括氯唑嗪)会诱导 Mtb 中的 BlaI 调节子,因此我们发现氯唑嗪会诱导 blaIRMab 及其下游调节子。BlaIRMab 在适应能量代谢紊乱方面发挥着重要作用,而 BlaIMab 调节子的组成性抑制则使马立克氏菌对氯噻嗪高度敏感。除了我们意外发现 BlaIRMab 并不调控β-内酰胺抗性之外,这项研究还突出了分枝杆菌 BlaRI 型调控因子在调控电子传递和呼吸中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
期刊最新文献
Comparative Multi-Omics Survey Reveals Novel Specialized Metabolites and Biosynthetic Gene Clusters Under GacS Control in Pseudomonas donghuensis Strain SVBP6 Bacterial Organelles in Iron Physiology Converging Roles of the Metal Transporter SMF11 and the Ferric Reductase FRE1 in Iron Homeostasis of Candida albicans Leptospira Leptolysin Contributes to Serum Resistance but Is Not Essential for Acute Infection. Capsular Polysaccharide Production in Bacteria of the Mycoplasma Genus: A Huge Diversity of Pathways and Synthases for So-Called Minimal Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1