Additional predictors of stroke and transient ischaemic attack in BEFAST positive patients in out-of-hours emergency primary care.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0310769
Florien S van Royen, Geert-Jan Geersing, Daphne C Erkelens, Mathé Delissen, Jorn V F Rutten, Dorien L Zwart, Maarten van Smeden, Frans H Rutten, Sander van Doorn
{"title":"Additional predictors of stroke and transient ischaemic attack in BEFAST positive patients in out-of-hours emergency primary care.","authors":"Florien S van Royen, Geert-Jan Geersing, Daphne C Erkelens, Mathé Delissen, Jorn V F Rutten, Dorien L Zwart, Maarten van Smeden, Frans H Rutten, Sander van Doorn","doi":"10.1371/journal.pone.0310769","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In patients suspected of stroke or transient ischemic attack (TIA), rapid triaging is imperative to improve clinical outcomes. For this purpose, balance-eye-face-arm-speech-time (BEFAST) items are used in out-of-hours primary care (OHS-PC). We explored the risk of stroke and TIA among BEFAST positive patients calling to the OHS-PC, and assessed whether additional predictors could improve risk stratification.</p><p><strong>Methods: </strong>This is a cross-sectional study of retrospectively gathered routine care data from telephone triage tape-recordings of patients calling the OHS-PC with neurological deficit symptoms, classified as BEFAST positive. Four models-with the predictors age, sex, a history of cardiovascular or cerebrovascular disease, and cardiovascular risk factors-were fitted using logistic regression to predict the outcome stroke or TIA. Likelihood ratio testing was used to select the best model, which was subsequently internally validated.</p><p><strong>Results: </strong>The risk of stroke or TIA diagnosis was 52% among 1,289 BEFAST positive patients, median age 72 years, 56% female sex. Of patients with the outcome stroke/TIA, 24% received a low urgency allocation, while 92% had signs or symptoms when calling. Only the addition of age and sex improved predicting stroke or TIA (internally validated c-statistic 0.72, 95%CI 0.69-0.75). The predicted risk of stroke or TIA remained below 20% in those aged below 40. Females aged 70 or over and males aged 55 or over, had a predicted risk above 50%.</p><p><strong>Discussion: </strong>Urgency allocation appears to be suboptimal in BEFAST positive patients calling the OHS-PC. Risk stratification could be improved in this setting by adding age and sex.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 9","pages":"e0310769"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0310769","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In patients suspected of stroke or transient ischemic attack (TIA), rapid triaging is imperative to improve clinical outcomes. For this purpose, balance-eye-face-arm-speech-time (BEFAST) items are used in out-of-hours primary care (OHS-PC). We explored the risk of stroke and TIA among BEFAST positive patients calling to the OHS-PC, and assessed whether additional predictors could improve risk stratification.

Methods: This is a cross-sectional study of retrospectively gathered routine care data from telephone triage tape-recordings of patients calling the OHS-PC with neurological deficit symptoms, classified as BEFAST positive. Four models-with the predictors age, sex, a history of cardiovascular or cerebrovascular disease, and cardiovascular risk factors-were fitted using logistic regression to predict the outcome stroke or TIA. Likelihood ratio testing was used to select the best model, which was subsequently internally validated.

Results: The risk of stroke or TIA diagnosis was 52% among 1,289 BEFAST positive patients, median age 72 years, 56% female sex. Of patients with the outcome stroke/TIA, 24% received a low urgency allocation, while 92% had signs or symptoms when calling. Only the addition of age and sex improved predicting stroke or TIA (internally validated c-statistic 0.72, 95%CI 0.69-0.75). The predicted risk of stroke or TIA remained below 20% in those aged below 40. Females aged 70 or over and males aged 55 or over, had a predicted risk above 50%.

Discussion: Urgency allocation appears to be suboptimal in BEFAST positive patients calling the OHS-PC. Risk stratification could be improved in this setting by adding age and sex.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非工作时间急诊初级保健中 BEFAST 阳性患者中风和短暂性脑缺血发作的其他预测因素。
导言:对于疑似中风或短暂性脑缺血发作(TIA)患者,快速分流是改善临床疗效的当务之急。为此,在非工作时间初级保健(OHS-PC)中使用了平衡-视力-面部-手臂-语言时间(BEFAST)项目。我们探讨了致电 OHS-PC 的 BEFAST 阳性患者发生中风和 TIA 的风险,并评估了额外的预测因素是否能改善风险分层:这是一项横断面研究,研究人员从电话分诊录音中回顾性收集了被归类为 BEFAST 阳性的致电 OHS-PC 且伴有神经功能缺失症状的患者的常规护理数据。研究人员使用逻辑回归法拟合了四个模型(预测因子包括年龄、性别、心脑血管疾病史和心血管风险因素),以预测中风或 TIA 的结果。使用似然比检验选出最佳模型,随后进行内部验证:在 1289 名 BEFAST 阳性患者中,脑卒中或 TIA 诊断风险为 52%,中位年龄为 72 岁,女性占 56%。在结果为中风/TIA 的患者中,24% 接受了低急诊分配,而 92% 在呼叫时有体征或症状。只有加入年龄和性别后,中风或 TIA 的预测结果才会有所改善(内部验证的 c 统计量为 0.72,95%CI 为 0.69-0.75)。40 岁以下人群的中风或 TIA 预测风险仍低于 20%。70 岁及以上女性和 55 岁及以上男性的预测风险高于 50%:讨论:在呼叫 OHS-PC 的 BEFAST 阳性患者中,急诊分配似乎并不理想。在这种情况下,可以通过增加年龄和性别来改进风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
A deep learning model to enhance lung cancer detection using 'Dual-Branch' model classification approach. Machine translationese of large language models: Dependency triplets, text classification, and SHAP analysis. Mechanisms of cellular senescence combined with molecular docking strategies: A biomarker study of potential therapeutic targets for allergic rhinitis. Assessment of helmet usage among secondary school students in urban settings: A descriptive analytical study from Karachi, Pakistan. Evaluating the clinical care, quality of life and overall experiences of patients with primary biliary cholangitis (PBC) during the pandemic: A Canadian mixed-methods study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1