{"title":"Human induced pluripotent stem cell line (FDHSi005-A) derived from a patient with a deep intronic variant in the GNE gene","authors":"Kexin Jiao , Jialong Zhang , Ningning Wang , Xingyu Gu , Xuechun Chang , Xingyu Xia , Bochen Zhu , Mingshi Gao , Nachuan Cheng , Chongbo Zhao , Jianying Xi , Wenhua Zhu","doi":"10.1016/j.scr.2024.103562","DOIUrl":null,"url":null,"abstract":"<div><div>GlcNAc2-epimerase myopathy is a rare autosomal recessive myopathy characterized by distal involvement in the lower extremities. Our study reprogrammed human-induced pluripotent stem cells from peripheral blood mononuclear cells of a patient with <em>GNE</em> gene deep intronic variant c.862 + 870C>T and c.478C>T compound heterozygous mutations that co-segregated with the disease. The generated iPSCs express pluripotent cell markers with no mycoplasma contamination. Additionally, these iPSCs demonstrated pluripotency, the capacity to differentiate into the three germ layers, and maintained normal karyotypes. Importantly, we identified that these iPSCs possess the same specific mutations as the patient, making them a robust model for studying GNE myopathy and developing potential therapeutic interventions.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"81 ","pages":"Article 103562"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1873506124002605/pdfft?md5=8283fc49d24d991e92da9aec4ed400c1&pid=1-s2.0-S1873506124002605-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506124002605","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GlcNAc2-epimerase myopathy is a rare autosomal recessive myopathy characterized by distal involvement in the lower extremities. Our study reprogrammed human-induced pluripotent stem cells from peripheral blood mononuclear cells of a patient with GNE gene deep intronic variant c.862 + 870C>T and c.478C>T compound heterozygous mutations that co-segregated with the disease. The generated iPSCs express pluripotent cell markers with no mycoplasma contamination. Additionally, these iPSCs demonstrated pluripotency, the capacity to differentiate into the three germ layers, and maintained normal karyotypes. Importantly, we identified that these iPSCs possess the same specific mutations as the patient, making them a robust model for studying GNE myopathy and developing potential therapeutic interventions.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.