The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere.
Noé Lugaz, Christina O Lee, Nada Al-Haddad, Robert J Lillis, Lan K Jian, David W Curtis, Antoinette B Galvin, Phyllis L Whittlesey, Ali Rahmati, Eftyhia Zesta, Mark Moldwin, Errol J Summerlin, Davin E Larson, Sasha Courtade, Richard French, Richard Hunter, Federico Covitti, Daniel Cosgrove, J D Prall, Robert C Allen, Bin Zhuang, Réka M Winslow, Camilla Scolini, Benjamin J Lynch, Rachael J Filwett, Erika Palmerio, Charles J Farrugia, Charles W Smith, Christian Möstl, Eva Weiler, Miho Janvier, Florian Regnault, Roberto Livi, Teresa Nieves-Chinchilla
{"title":"The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere.","authors":"Noé Lugaz, Christina O Lee, Nada Al-Haddad, Robert J Lillis, Lan K Jian, David W Curtis, Antoinette B Galvin, Phyllis L Whittlesey, Ali Rahmati, Eftyhia Zesta, Mark Moldwin, Errol J Summerlin, Davin E Larson, Sasha Courtade, Richard French, Richard Hunter, Federico Covitti, Daniel Cosgrove, J D Prall, Robert C Allen, Bin Zhuang, Réka M Winslow, Camilla Scolini, Benjamin J Lynch, Rachael J Filwett, Erika Palmerio, Charles J Farrugia, Charles W Smith, Christian Möstl, Eva Weiler, Miho Janvier, Florian Regnault, Roberto Livi, Teresa Nieves-Chinchilla","doi":"10.1007/s11214-024-01108-8","DOIUrl":null,"url":null,"abstract":"<p><p>Based on decades of single-spacecraft measurements near 1 au as well as data from heliospheric and planetary missions, multi-spacecraft simultaneous measurements in the inner heliosphere on separations of 0.05-0.2 au are required to close existing gaps in our knowledge of solar wind structures, transients, and energetic particles, especially coronal mass ejections (CMEs), stream interaction regions (SIRs), high speed solar wind streams (HSS), and energetic storm particle (ESP) events. The Mission to Investigate Interplanetary Structures and Transients (MIIST) is a concept for a small multi-spacecraft mission to explore the near-Earth heliosphere on these critical scales. It is designed to advance two goals: (a) to determine the spatiotemporal variations and the variability of solar wind structures, transients, and energetic particle fluxes in near-Earth interplanetary (IP) space, and (b) to advance our fundamental knowledge necessary to improve space weather forecasting from <i>in situ</i> data. We present the scientific rationale for this proposed mission, the science requirements, payload, implementation, and concept of mission operation that address a key gap in our knowledge of IP structures and transients within the cost, launch, and schedule limitations of the NASA Heliophysics Small Explorers program.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-024-01108-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on decades of single-spacecraft measurements near 1 au as well as data from heliospheric and planetary missions, multi-spacecraft simultaneous measurements in the inner heliosphere on separations of 0.05-0.2 au are required to close existing gaps in our knowledge of solar wind structures, transients, and energetic particles, especially coronal mass ejections (CMEs), stream interaction regions (SIRs), high speed solar wind streams (HSS), and energetic storm particle (ESP) events. The Mission to Investigate Interplanetary Structures and Transients (MIIST) is a concept for a small multi-spacecraft mission to explore the near-Earth heliosphere on these critical scales. It is designed to advance two goals: (a) to determine the spatiotemporal variations and the variability of solar wind structures, transients, and energetic particle fluxes in near-Earth interplanetary (IP) space, and (b) to advance our fundamental knowledge necessary to improve space weather forecasting from in situ data. We present the scientific rationale for this proposed mission, the science requirements, payload, implementation, and concept of mission operation that address a key gap in our knowledge of IP structures and transients within the cost, launch, and schedule limitations of the NASA Heliophysics Small Explorers program.
根据数十年来对 1 au 附近的单个航天器测量以及日光层和行星飞行任务的数据,需要对相距 0.05-0.2 au 的内日光层进行多航天器同步测量,以弥补我们对太阳风结构、瞬态和高能粒子,特别是日冕物质抛射(CME)、流交互区(SIR)、高速太阳风流(HSS)和高能风暴粒子(ESP)事件的认识上的现有差距。行星际结构和瞬变现象调查任务(MIIST)是一个小型多航天器任务概念,目的是在这些关键尺度上探索近地日光层。其目的有两个(a) 确定近地行星际(IP)空间中太阳风结构、瞬态和高能粒子通量的时空变化和可变性,以及 (b) 增进我们的基础知识,以便利用现场数据改进空间天气预报。我们介绍了这一拟议飞行任务的科学原理、科学要求、有效载荷、实施和飞行任务运行概念,在美国国家航空航天局太阳物理学小型探索者计划的成本、发射和时间表限制范围内,填补了我们对行星际空间结构和瞬态的认识方面的一个关键空白。
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.