{"title":"Synthesis of 3-methyl-3-buten-1-ol by supercritical CO<sub>2</sub> in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.","authors":"Hang Yuan, Gui-Ping Cao, Hui Lv","doi":"10.55730/1300-0527.3682","DOIUrl":null,"url":null,"abstract":"<p><p>The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO<sub>2</sub> was investigated using CsH<sub>2</sub>PO<sub>4</sub>-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO<sub>2</sub> with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3682","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reaction solvent and catalyst play essential roles in the Prins reaction for the synthesis of 3-methyl-3-buten-1-ol (MBO) from formaldehyde and isobutene. The reactivity of the solid base-catalyzed Prins condensation reaction by formaldehyde and isobutene in supercritical CO2 was investigated using CsH2PO4-modified HZSM-5. We found that the alkaline sites of the alkali-loaded catalyst could extract the α-H on isobutene to generate olefin carbon-negative ions, while the supercritical CO2 with weak Lewis acidity could activate formaldehyde to carbon-positive ions, which can combine more easily with carbon-negative isobutene to react, thus improving the reactivity of the reaction system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.