Optimized Ginkgo leaf biochar: An efficient adsorbent for 2,4-D herbicide removal from wastewater.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-09-01 DOI:10.1002/wer.11124
Wenyu Ma, Rui Song, Yujiao Wang, Xiaoyan Cui, Yumei Yan, Zhili Liu, Xiaojun Wang, Haixiang Gao, Runhua Lua, Wenfeng Zhou
{"title":"Optimized Ginkgo leaf biochar: An efficient adsorbent for 2,4-D herbicide removal from wastewater.","authors":"Wenyu Ma, Rui Song, Yujiao Wang, Xiaoyan Cui, Yumei Yan, Zhili Liu, Xiaojun Wang, Haixiang Gao, Runhua Lua, Wenfeng Zhou","doi":"10.1002/wer.11124","DOIUrl":null,"url":null,"abstract":"<p><p>This research exploited biochar, sourced from Ginkgo leaves (GLs), to facilitate the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous environments. The results reveal that GL biochar, activated with ZnCl<sub>2</sub> at a temperature of 500°C (500-ZGBC), demonstrated the greatest specific surface area (S<sub>BET</sub>) of 536.0 m<sup>2</sup> g<sup>-1</sup> for 2,4-D adsorption. The biochar's properties, including specific surface area, morphology, structure, thermal stability, and functional groups, were analyzed. Additionally, studies of kinetic and isotherm profiles were conducted, yielding the highest recorded adsorption capacity of 281.8 mg g<sup>-1</sup>. Pore filling, hydrogen bonding, π-π interactions, surface complexation with Zn groups, and electrostatic interactions contribute significantly to the adsorption performance of 500-ZGBC for 2,4-D. Optimal adsorption was determined to occur at pH 2.117, with a dose of 0.4230 g L<sup>-1</sup> of 500-ZGBC, and an initial concentration of 2,4-D at 294.7 mg L<sup>-1</sup>, as evidenced by the application of the response surface method (RSM). PRACTITIONER POINTS: Premium pharmaceutical-grade biochar, derived from Ginkgo leaves, boasting a S<sub>BET</sub> of 536.0 m<sup>2</sup> g<sup>-1</sup> was produced. An absorption capacity reaching 281.8 mg g<sup>-1</sup> was observed in Ginkgo leaf biochar for 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption. The adsorption procedure was refined through the employment of response surface methodology.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 9","pages":"e11124"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11124","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research exploited biochar, sourced from Ginkgo leaves (GLs), to facilitate the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous environments. The results reveal that GL biochar, activated with ZnCl2 at a temperature of 500°C (500-ZGBC), demonstrated the greatest specific surface area (SBET) of 536.0 m2 g-1 for 2,4-D adsorption. The biochar's properties, including specific surface area, morphology, structure, thermal stability, and functional groups, were analyzed. Additionally, studies of kinetic and isotherm profiles were conducted, yielding the highest recorded adsorption capacity of 281.8 mg g-1. Pore filling, hydrogen bonding, π-π interactions, surface complexation with Zn groups, and electrostatic interactions contribute significantly to the adsorption performance of 500-ZGBC for 2,4-D. Optimal adsorption was determined to occur at pH 2.117, with a dose of 0.4230 g L-1 of 500-ZGBC, and an initial concentration of 2,4-D at 294.7 mg L-1, as evidenced by the application of the response surface method (RSM). PRACTITIONER POINTS: Premium pharmaceutical-grade biochar, derived from Ginkgo leaves, boasting a SBET of 536.0 m2 g-1 was produced. An absorption capacity reaching 281.8 mg g-1 was observed in Ginkgo leaf biochar for 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption. The adsorption procedure was refined through the employment of response surface methodology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化的银杏叶生物炭:去除废水中 2,4-D 除草剂的高效吸附剂。
这项研究利用取自银杏叶(GLs)的生物炭来促进水环境中 2,4-D 的吸附。结果表明,在 500°C 温度下用氯化锌活化的 GL 生物炭(500-ZGBC)吸附 2,4-D 的比表面积(SBET)最大,为 536.0 m2 g-1。分析了生物炭的特性,包括比表面积、形态、结构、热稳定性和官能团。此外,还对动力学和等温线曲线进行了研究,记录到的最高吸附容量为 281.8 mg g-1。孔隙填充、氢键、π-π 相互作用、与 Zn 基团的表面复合以及静电作用对 500-ZGBC 对 2,4-D 的吸附性能有很大帮助。应用响应面法(RSM)证明,最佳吸附作用发生在 pH 值为 2.117、500-ZGBC 的剂量为 0.4230 克/升-1、2,4-D 的初始浓度为 294.7 毫克/升-1 时。实践点:从银杏叶中提取的优质医药级生物炭,其 SBET 为 536.0 m2 g-1。银杏叶生物炭对 2,4-二氯苯氧乙酸(2,4-D)的吸附能力达到 281.8 mg g-1。通过采用响应面方法,对吸附程序进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Biofilm characterization and dynamic simulation of advanced rope media reactor for the treatment of primary effluent. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1