Bacterial membrane vesicles: formation, functions, and roles in bacterial-phage interactions.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY World journal of microbiology & biotechnology Pub Date : 2024-09-21 DOI:10.1007/s11274-024-04148-y
Shichao Xuan, Guanhua Xuan
{"title":"Bacterial membrane vesicles: formation, functions, and roles in bacterial-phage interactions.","authors":"Shichao Xuan, Guanhua Xuan","doi":"10.1007/s11274-024-04148-y","DOIUrl":null,"url":null,"abstract":"<p><p>Outer membrane vesicles (OMVs) are nano-sized vesicles actively released by Gram-negative bacteria, playing a crucial role in bacterial survival and interactions with phages. This review focuses on OMVs and succinctly delineates the stimuli instigating OMV formation, their functional repertoire, and their involvement in bacterial-phage interplays. Initially, the discussion centers on the drivers prompting OMV genesis, encompassing both extrinsic environmental pressures and intrinsic regulatory mechanisms within bacterial systems. Subsequently, a comprehensive examination of OMVs' multifaceted functions in bacterial physiology ensues, spanning signaling cascades, nutrient transport, antibiotic resilience, and evasion of immune surveillance. Particular emphasis is placed on elucidating the paramount significance of OMVs in mediating bacterial-phage dynamics. OMVs function as decoys, providing protection to bacterial hosts against phages, and concurrently promoting the spread of phage receptors, thereby rendering phage-resistant strains susceptible to phage invasion. This comprehensive review deepens our comprehension of membrane vesicles biogenesis in bacteria and their pivotal role in microbial community dynamics.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 10","pages":"329"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04148-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Outer membrane vesicles (OMVs) are nano-sized vesicles actively released by Gram-negative bacteria, playing a crucial role in bacterial survival and interactions with phages. This review focuses on OMVs and succinctly delineates the stimuli instigating OMV formation, their functional repertoire, and their involvement in bacterial-phage interplays. Initially, the discussion centers on the drivers prompting OMV genesis, encompassing both extrinsic environmental pressures and intrinsic regulatory mechanisms within bacterial systems. Subsequently, a comprehensive examination of OMVs' multifaceted functions in bacterial physiology ensues, spanning signaling cascades, nutrient transport, antibiotic resilience, and evasion of immune surveillance. Particular emphasis is placed on elucidating the paramount significance of OMVs in mediating bacterial-phage dynamics. OMVs function as decoys, providing protection to bacterial hosts against phages, and concurrently promoting the spread of phage receptors, thereby rendering phage-resistant strains susceptible to phage invasion. This comprehensive review deepens our comprehension of membrane vesicles biogenesis in bacteria and their pivotal role in microbial community dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌膜囊:细菌-噬菌体相互作用中的形成、功能和作用。
外膜囊泡 (OMV) 是革兰氏阴性细菌主动释放的纳米级囊泡,在细菌的生存以及与噬菌体的相互作用中发挥着至关重要的作用。本综述以 OMV 为重点,简明扼要地描述了促使 OMV 形成的刺激因素、其功能范围以及在细菌-噬菌体相互作用中的参与。首先,讨论的中心是促使 OMV 形成的驱动因素,包括外在环境压力和细菌系统的内在调控机制。随后,对 OMV 在细菌生理学中的多方面功能进行了全面研究,包括信号级联、营养运输、抗生素恢复能力和逃避免疫监视。研究特别强调阐明 OMV 在介导细菌-噬菌体动力学方面的重要作用。OMV 起着诱饵的作用,既能保护细菌宿主免受噬菌体的侵害,又能促进噬菌体受体的传播,从而使抗噬菌体的菌株容易受到噬菌体的入侵。这篇全面的综述加深了我们对细菌膜泡生物生成及其在微生物群落动态中的关键作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
期刊最新文献
Antifungal efficacy and biofumigation potential of hydrophobic deep eutectic solvents: Postharvest treatment against Monilinia fructicola and Botrytis Cinerea. Biofilm and Extracellular Polymeric Substance (EPS) synergy: Revealing Staphylococcus's role in nitrate bioremediation. Research progress on the function and regulatory pathways of amino acid permeases in fungi. Synergistic effects of gamma irradiation/salmide®, a sodium chlorite-based oxy-halogen, on microbiological control and the shelf life of chicken breasts. Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1