Evaluation of machine learning models that predict lncRNA subcellular localization.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-09-18 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae125
Jason R Miller, Weijun Yi, Donald A Adjeroh
{"title":"Evaluation of machine learning models that predict lncRNA subcellular localization.","authors":"Jason R Miller, Weijun Yi, Donald A Adjeroh","doi":"10.1093/nargab/lqae125","DOIUrl":null,"url":null,"abstract":"<p><p>The lncATLAS database quantifies the relative cytoplasmic versus nuclear abundance of long non-coding RNAs (lncRNAs) observed in 15 human cell lines. The literature describes several machine learning models trained and evaluated on these and similar datasets. These reports showed moderate performance, <i>e.g</i>. 72-74% accuracy, on test subsets of the data withheld from training. In all these reports, the datasets were filtered to include genes with extreme values while excluding genes with values in the middle range and the filters were applied prior to partitioning the data into training and testing subsets. Using several models and lncATLAS data, we show that this 'middle exclusion' protocol boosts performance metrics without boosting model performance on unfiltered test data. We show that various models achieve only about 60% accuracy when evaluated on unfiltered lncRNA data. We suggest that the problem of predicting lncRNA subcellular localization from nucleotide sequences is more challenging than currently perceived. We provide a basic model and evaluation procedure as a benchmark for future studies of this problem.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae125"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409063/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The lncATLAS database quantifies the relative cytoplasmic versus nuclear abundance of long non-coding RNAs (lncRNAs) observed in 15 human cell lines. The literature describes several machine learning models trained and evaluated on these and similar datasets. These reports showed moderate performance, e.g. 72-74% accuracy, on test subsets of the data withheld from training. In all these reports, the datasets were filtered to include genes with extreme values while excluding genes with values in the middle range and the filters were applied prior to partitioning the data into training and testing subsets. Using several models and lncATLAS data, we show that this 'middle exclusion' protocol boosts performance metrics without boosting model performance on unfiltered test data. We show that various models achieve only about 60% accuracy when evaluated on unfiltered lncRNA data. We suggest that the problem of predicting lncRNA subcellular localization from nucleotide sequences is more challenging than currently perceived. We provide a basic model and evaluation procedure as a benchmark for future studies of this problem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估预测 lncRNA 亚细胞定位的机器学习模型。
lncATLAS 数据库量化了在 15 种人类细胞系中观察到的长非编码 RNA(lncRNA)在细胞质与细胞核中的相对丰度。文献介绍了在这些数据集和类似数据集上训练和评估的几种机器学习模型。这些报告显示,这些模型在训练数据的测试子集上表现一般,例如准确率为 72-74%。在所有这些报告中,数据集都经过过滤,以包括具有极端值的基因,同时排除具有中间范围值的基因,而且过滤是在将数据划分为训练和测试子集之前进行的。我们使用几个模型和 lncATLAS 数据表明,这种 "中间排除 "协议提高了性能指标,但并没有提高模型在未过滤测试数据上的性能。我们发现,在未过滤的 lncRNA 数据上进行评估时,各种模型的准确率只有 60% 左右。我们认为,从核苷酸序列预测 lncRNA 亚细胞定位的问题比目前认为的更具挑战性。我们提供了一个基本模型和评估程序,作为今后研究该问题的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1