Progress on deep learning in genomics.

Q3 Medicine 遗传 Pub Date : 2024-09-01 DOI:10.16288/j.yczz.24-151
Yan-Chun Bao, Cai-Xia Shi, Chuan-Qiang Zhang, Ming-Juan Gu, Lin Zhu, Zai-Xia Liu, Le Zhou, Feng-Ying Ma, Ri-Su Na, Wen-Guang Zhang
{"title":"Progress on deep learning in genomics.","authors":"Yan-Chun Bao, Cai-Xia Shi, Chuan-Qiang Zhang, Ming-Juan Gu, Lin Zhu, Zai-Xia Liu, Le Zhou, Feng-Ying Ma, Ri-Su Na, Wen-Guang Zhang","doi":"10.16288/j.yczz.24-151","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid growth of data driven by high-throughput sequencing technologies, genomics has entered an era characterized by big data, which presents significant challenges for traditional bioinformatics methods in handling complex data patterns. At this critical juncture of technological progress, deep learning-an advanced artificial intelligence technology-offers powerful capabilities for data analysis and pattern recognition, revitalizing genomic research. In this review, we focus on four major deep learning models: Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), and Generative Adversarial Network(GAN). We outline their core principles and provide a comprehensive review of their applications in DNA, RNA, and protein research over the past five years. Additionally, we also explore the use of deep learning in livestock genomics, highlighting its potential benefits and challenges in genetic trait analysis, disease prevention, and genetic enhancement. By delivering a thorough analysis, we aim to enhance precision and efficiency in genomic research through deep learning and offer a framework for developing and applying livestock genomic strategies, thereby advancing precision livestock farming and genetic breeding technologies.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 9","pages":"701-715"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of data driven by high-throughput sequencing technologies, genomics has entered an era characterized by big data, which presents significant challenges for traditional bioinformatics methods in handling complex data patterns. At this critical juncture of technological progress, deep learning-an advanced artificial intelligence technology-offers powerful capabilities for data analysis and pattern recognition, revitalizing genomic research. In this review, we focus on four major deep learning models: Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Long Short-Term Memory(LSTM), and Generative Adversarial Network(GAN). We outline their core principles and provide a comprehensive review of their applications in DNA, RNA, and protein research over the past five years. Additionally, we also explore the use of deep learning in livestock genomics, highlighting its potential benefits and challenges in genetic trait analysis, disease prevention, and genetic enhancement. By delivering a thorough analysis, we aim to enhance precision and efficiency in genomic research through deep learning and offer a framework for developing and applying livestock genomic strategies, thereby advancing precision livestock farming and genetic breeding technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组学深度学习的进展。
随着高通量测序技术推动数据的快速增长,基因组学进入了一个以大数据为特征的时代,这给传统生物信息学方法处理复杂数据模式带来了巨大挑战。在这一技术进步的关键时刻,深度学习--一种先进的人工智能技术--为数据分析和模式识别提供了强大的能力,为基因组学研究注入了新的活力。在本综述中,我们将重点介绍四种主要的深度学习模型:卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆(LSTM)和生成对抗网络(GAN)。我们概述了它们的核心原理,并全面回顾了过去五年它们在 DNA、RNA 和蛋白质研究中的应用。此外,我们还探讨了深度学习在家畜基因组学中的应用,强调了其在遗传性状分析、疾病预防和基因强化方面的潜在优势和挑战。通过深入分析,我们旨在通过深度学习提高基因组研究的精度和效率,并为开发和应用家畜基因组策略提供一个框架,从而推动精准家畜养殖和遗传育种技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍:
期刊最新文献
Design and practice of educational experiments on genetic epistasis. Drug resistance mechanism of anti-angiogenesis therapy in tumor. Dual-localization signals enhance mitochondrial targeted presentation of engineered proteins. Identification and functional characterization of CD209 homologous genes in zebrafish. Progress on the mining of functional genes of Lonicera japonica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1