Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Thoracic Imaging Pub Date : 2024-09-11 DOI:10.1097/RTI.0000000000000804
Alysson R S Carvalho, Alan Guimarães, Rodrigo Basilio, Marco A Conrado da Silva, Sandro Colli, Carolina Galhós de Aguiar, Rafael C Pereira, Liseane G Lisboa, Bruno Hochhegger, Rosana S Rodrigues
{"title":"Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis.","authors":"Alysson R S Carvalho, Alan Guimarães, Rodrigo Basilio, Marco A Conrado da Silva, Sandro Colli, Carolina Galhós de Aguiar, Rafael C Pereira, Liseane G Lisboa, Bruno Hochhegger, Rosana S Rodrigues","doi":"10.1097/RTI.0000000000000804","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare texture-based analysis using convolutional neural networks (CNNs) against lung densitometry in detecting chest computed tomography (CT) image abnormalities.</p><p><strong>Material and methods: </strong>A U-NET was used for lung segmentation, and an ensemble of 7 CNN architectures was trained for the classification of low-attenuation areas (LAAs; emphysema, cysts), normal-attenuation areas (NAAs; normal parenchyma), and high-attenuation areas (HAAs; ground-glass opacities, crazy paving/linear opacity, consolidation). Lung densitometry also computes (LAAs, ≤-950 HU), NAAs (-949 to -700 HU), and HAAs (-699 to -250 HU). CNN-based and densitometry-based severity indices (CNN and Dens, respectively) were calculated as (LAA+HAA)/(LAA+NAA+HAA) in 812 CT scans from 176 normal subjects, 343 patients with emphysema, and 293 patients with interstitial lung disease (ILD). The correlation between CNN-derived and densitometry-derived indices was analyzed, alongside a comparison of severity indices among patient subgroups with emphysema and ILD, using the Spearman correlation and ANOVA with Bonferroni correction.</p><p><strong>Results: </strong>CNN-derived and densitometry-derived severity indices (SIs) showed a strong correlation (ρ=0.90) and increased with disease severity. CNN-SIs differed from densitometry SIs, being lower for emphysema and higher for moderate to severe ILD cases. CNN estimations for normal attenuation areas were higher than those from densitometry across all groups, indicating a potential for more accurate characterization of lung abnormalities.</p><p><strong>Conclusions: </strong>CNN outputs align closely with densitometry in assessing lung abnormalities on CT scans, offering improved estimates of normal areas and better distinguishing similar abnormalities. However, this requires higher computing power.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000804","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To compare texture-based analysis using convolutional neural networks (CNNs) against lung densitometry in detecting chest computed tomography (CT) image abnormalities.

Material and methods: A U-NET was used for lung segmentation, and an ensemble of 7 CNN architectures was trained for the classification of low-attenuation areas (LAAs; emphysema, cysts), normal-attenuation areas (NAAs; normal parenchyma), and high-attenuation areas (HAAs; ground-glass opacities, crazy paving/linear opacity, consolidation). Lung densitometry also computes (LAAs, ≤-950 HU), NAAs (-949 to -700 HU), and HAAs (-699 to -250 HU). CNN-based and densitometry-based severity indices (CNN and Dens, respectively) were calculated as (LAA+HAA)/(LAA+NAA+HAA) in 812 CT scans from 176 normal subjects, 343 patients with emphysema, and 293 patients with interstitial lung disease (ILD). The correlation between CNN-derived and densitometry-derived indices was analyzed, alongside a comparison of severity indices among patient subgroups with emphysema and ILD, using the Spearman correlation and ANOVA with Bonferroni correction.

Results: CNN-derived and densitometry-derived severity indices (SIs) showed a strong correlation (ρ=0.90) and increased with disease severity. CNN-SIs differed from densitometry SIs, being lower for emphysema and higher for moderate to severe ILD cases. CNN estimations for normal attenuation areas were higher than those from densitometry across all groups, indicating a potential for more accurate characterization of lung abnormalities.

Conclusions: CNN outputs align closely with densitometry in assessing lung abnormalities on CT scans, offering improved estimates of normal areas and better distinguishing similar abnormalities. However, this requires higher computing power.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用密度测量和纹理分析自动量化胸部计算机断层扫描图像上的异常肺实质衰减。
目的:在检测胸部计算机断层扫描(CT)图像异常时,比较使用卷积神经网络(CNN)和肺密度测量法进行的基于纹理的分析:使用 U-NET 进行肺部分割,并对 7 个 CNN 架构的组合进行训练,以对低衰减区(LAA;肺气肿、囊肿)、正常衰减区(NAA;正常实质)和高衰减区(HAA;磨玻璃不透明、疯狂铺垫/线性不透明、合并)进行分类。肺部密度测定也能计算(LAA,≤-950 HU)、NAA(-949 至 -700 HU)和 HAA(-699 至 -250 HU)。对来自 176 名正常人、343 名肺气肿患者和 293 名间质性肺病(ILD)患者的 812 张 CT 扫描图像计算了基于 CNN 的严重程度指数和基于密度测量的严重程度指数(CNN 和 Dens,分别为 (LAA+HAA)/(LAA+NAA+HAA) 。)使用斯皮尔曼相关性和方差分析及 Bonferroni 校正,分析了 CNN 导出的指数与密度测量法导出的指数之间的相关性,以及肺气肿和 ILD 患者亚组之间严重程度指数的比较:结果:CNN 导出的严重程度指数(SIs)与密度测量法导出的严重程度指数(SIs)显示出很强的相关性(ρ=0.90),并且随着疾病严重程度的增加而增加。CNN-SIs 与密度测定 SIs 不同,肺气肿病例的 CNN-SIs 较低,而中重度 ILD 病例的 CNN-SIs 较高。在所有组别中,CNN 对正常衰减区域的估计值均高于密度测量法,这表明CNN 有可能更准确地描述肺部异常:结论:在评估 CT 扫描中的肺部异常时,CNN 的输出结果与密度测量法非常接近,能更好地估计正常区域,更好地区分类似的异常。然而,这需要更高的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thoracic Imaging
Journal of Thoracic Imaging 医学-核医学
CiteScore
7.10
自引率
9.10%
发文量
87
审稿时长
6-12 weeks
期刊介绍: Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology. Official Journal of the Society of Thoracic Radiology: Japanese Society of Thoracic Radiology Korean Society of Thoracic Radiology European Society of Thoracic Imaging.
期刊最新文献
Spatial Resolution Fidelity Comparison Between Energy Integrating and Deep Silicon Photon Counting CT: Implications for Pulmonary Imaging. Incidental Apical Pleuroparenchymal Scarring on Computed Tomography: Diagnostic Yield, Progression, Morphologic Features and Clinical Significance. The Relationship Between Cardiac CT-based Left Atrial Structure and Epicardial Adipose Tissue and Postablation Atrial Fibrillation Recurrence Within 2 Years. Left Atrial Strain for Prediction of Left Ventricular Reverse Remodeling After ST-segment Elevation Myocardial Infarction by Cardiac Magnetic Resonance Feature Tracking. Coronary Atherosclerosis Progression Provides Incremental Prognostic Value and Optimizes Risk Reclassification by Computed Tomography Angiography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1