Ritoban Kundu, Xu Shi, Jean Morrison, Jessica Barrett, Bhramar Mukherjee
{"title":"A framework for understanding selection bias in real-world healthcare data.","authors":"Ritoban Kundu, Xu Shi, Jean Morrison, Jessica Barrett, Bhramar Mukherjee","doi":"10.1093/jrsssa/qnae039","DOIUrl":null,"url":null,"abstract":"<p><p>Using administrative patient-care data such as Electronic Health Records (EHR) and medical/pharmaceutical claims for population-based scientific research has become increasingly common. With vast sample sizes leading to very small standard errors, researchers need to pay more attention to potential biases in the estimates of association parameters of interest, specifically to biases that do not diminish with increasing sample size. Of these multiple sources of biases, in this paper, we focus on understanding selection bias. We present an analytic framework using directed acyclic graphs for guiding applied researchers to dissect how different sources of selection bias may affect estimates of the association between a binary outcome and an exposure (continuous or categorical) of interest. We consider four easy-to-implement weighting approaches to reduce selection bias with accompanying variance formulae. We demonstrate through a simulation study when they can rescue us in practice with analysis of real-world data. We compare these methods using a data example where our goal is to estimate the well-known association of cancer and biological sex, using EHR from a longitudinal biorepository at the University of Michigan Healthcare system. We provide annotated R codes to implement these weighted methods with associated inference.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnae039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Using administrative patient-care data such as Electronic Health Records (EHR) and medical/pharmaceutical claims for population-based scientific research has become increasingly common. With vast sample sizes leading to very small standard errors, researchers need to pay more attention to potential biases in the estimates of association parameters of interest, specifically to biases that do not diminish with increasing sample size. Of these multiple sources of biases, in this paper, we focus on understanding selection bias. We present an analytic framework using directed acyclic graphs for guiding applied researchers to dissect how different sources of selection bias may affect estimates of the association between a binary outcome and an exposure (continuous or categorical) of interest. We consider four easy-to-implement weighting approaches to reduce selection bias with accompanying variance formulae. We demonstrate through a simulation study when they can rescue us in practice with analysis of real-world data. We compare these methods using a data example where our goal is to estimate the well-known association of cancer and biological sex, using EHR from a longitudinal biorepository at the University of Michigan Healthcare system. We provide annotated R codes to implement these weighted methods with associated inference.
利用电子健康记录(EHR)和医疗/药品报销单等患者护理管理数据进行基于人群的科学研究已变得越来越普遍。庞大的样本量会导致极小的标准误差,因此研究人员需要更多地关注相关联参数估计中的潜在偏差,特别是那些不会随着样本量的增加而减少的偏差。在这些多种偏差来源中,我们在本文中将重点了解选择偏差。我们提出了一个使用有向无环图的分析框架,用于指导应用研究人员剖析不同来源的选择偏倚如何影响二元结果与相关暴露(连续或分类)之间关联的估计值。我们考虑了四种易于实施的加权方法来减少选择偏差,并给出了相应的方差公式。我们通过一项模拟研究来证明,在实际分析真实世界数据时,这些方法何时能拯救我们。我们使用一个数据示例来比较这些方法,我们的目标是利用密歇根大学医疗保健系统纵向生物库中的电子病历来估计众所周知的癌症与生理性别的关联。我们提供了附有注释的 R 代码,以实现这些加权方法和相关推断。
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.