Connie Ge MD , Junbong Jang MS , Patrick Svrcek MD , Victoria Fleming MD , Young H. Kim MD, PhD
{"title":"Exploring Deep Learning Applications using Ultrasound Single View Cines in Acute Gallbladder Pathologies: Preliminary Results","authors":"Connie Ge MD , Junbong Jang MS , Patrick Svrcek MD , Victoria Fleming MD , Young H. Kim MD, PhD","doi":"10.1016/j.acra.2024.08.061","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>In this preliminary study, we aimed to develop a deep learning model using ultrasound single view cines that distinguishes between imaging of normal gallbladder, non-urgent cholelithiasis, and acute calculous cholecystitis requiring urgent intervention.</div></div><div><h3>Methods</h3><div>Adult patients presenting to the emergency department between 2017–2022 with right-upper-quadrant pain were screened, and ultrasound single view cines of normal imaging, non-urgent cholelithiasis, and acute cholecystitis were included based on final clinical diagnosis. Longitudinal-view cines were de-identified and gallbladder pathology was annotated for model training. Cines were randomly sorted into training (70%), validation (10%), and testing (20%) sets and divided into 12-frame segments. The deep learning model classified cines as normal (all segments normal), cholelithiasis (normal and non-urgent cholelithiasis segments), and acute cholecystitis (any cholecystitis segment present).</div></div><div><h3>Results</h3><div>A total of 186 patients with 266 cines were identified: Normal imaging (52 patients; 104 cines), non-urgent cholelithiasis (73;88), and acute cholecystitis (61;74). The model achieved a 91% accuracy for Normal vs. Abnormal imaging and an 82% accuracy for Urgent (acute cholecystitis) vs. Non-urgent (cholelithiasis or normal imaging). Furthermore, the model identified abnormal from normal imaging with 100% specificity, with no false positive results.</div></div><div><h3>Conclusion</h3><div>Our deep learning model, using only readily obtained single-view cines, exhibited a high degree of accuracy and specificity in discriminating between non-urgent imaging and acute cholecystitis requiring urgent intervention.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 2","pages":"Pages 770-775"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1076633224006482","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and Objectives
In this preliminary study, we aimed to develop a deep learning model using ultrasound single view cines that distinguishes between imaging of normal gallbladder, non-urgent cholelithiasis, and acute calculous cholecystitis requiring urgent intervention.
Methods
Adult patients presenting to the emergency department between 2017–2022 with right-upper-quadrant pain were screened, and ultrasound single view cines of normal imaging, non-urgent cholelithiasis, and acute cholecystitis were included based on final clinical diagnosis. Longitudinal-view cines were de-identified and gallbladder pathology was annotated for model training. Cines were randomly sorted into training (70%), validation (10%), and testing (20%) sets and divided into 12-frame segments. The deep learning model classified cines as normal (all segments normal), cholelithiasis (normal and non-urgent cholelithiasis segments), and acute cholecystitis (any cholecystitis segment present).
Results
A total of 186 patients with 266 cines were identified: Normal imaging (52 patients; 104 cines), non-urgent cholelithiasis (73;88), and acute cholecystitis (61;74). The model achieved a 91% accuracy for Normal vs. Abnormal imaging and an 82% accuracy for Urgent (acute cholecystitis) vs. Non-urgent (cholelithiasis or normal imaging). Furthermore, the model identified abnormal from normal imaging with 100% specificity, with no false positive results.
Conclusion
Our deep learning model, using only readily obtained single-view cines, exhibited a high degree of accuracy and specificity in discriminating between non-urgent imaging and acute cholecystitis requiring urgent intervention.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.