Sihao He, Tianyong Hou, Jiangling Zhou, Bo Yu, Juan Cai, Fei Luo, Jianzhong Xu, Junchao Xing
{"title":"Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB.","authors":"Sihao He, Tianyong Hou, Jiangling Zhou, Bo Yu, Juan Cai, Fei Luo, Jianzhong Xu, Junchao Xing","doi":"10.1038/s41536-024-00364-0","DOIUrl":null,"url":null,"abstract":"<p><p>Application of tissue-engineered bones (TEBs) is hindered by challenges associated with incorporated viable cells. Previously, we employed freeze-drying techniques on TEBs to devitalize mesenchymal stem cells (MSCs) while preserving functional proteins, yielding functional proteins-based TEBs (FP-TEBs). Here, we aimed to elucidate their in vivo angiogenic and osteogenic capabilities and the mechanisms. qPCR arrays were employed to evaluate chemokines and receptors governing EC migration. Identified C-X-C chemokine receptors (CXCRs) were substantiated using shRNAs, and the pivotal role of CXCR2 was validated via conditional knockout mice. Finally, signaling molecules downstream of CXCR2 were identified. Additionally, Src, MAP4K4, and p38 MAPK were identified indispensable for CXCR2 function. Further investigations revealed that regulation of p38 MAPK by Src was mediated by MAP4K4. In conclusion, FP-TEBs promoted EC migration, angiogenesis, and osteogenesis via the CXCR2-Src-Map4k4-p38 MAPK axis.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"9 1","pages":"24"},"PeriodicalIF":6.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00364-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Application of tissue-engineered bones (TEBs) is hindered by challenges associated with incorporated viable cells. Previously, we employed freeze-drying techniques on TEBs to devitalize mesenchymal stem cells (MSCs) while preserving functional proteins, yielding functional proteins-based TEBs (FP-TEBs). Here, we aimed to elucidate their in vivo angiogenic and osteogenic capabilities and the mechanisms. qPCR arrays were employed to evaluate chemokines and receptors governing EC migration. Identified C-X-C chemokine receptors (CXCRs) were substantiated using shRNAs, and the pivotal role of CXCR2 was validated via conditional knockout mice. Finally, signaling molecules downstream of CXCR2 were identified. Additionally, Src, MAP4K4, and p38 MAPK were identified indispensable for CXCR2 function. Further investigations revealed that regulation of p38 MAPK by Src was mediated by MAP4K4. In conclusion, FP-TEBs promoted EC migration, angiogenesis, and osteogenesis via the CXCR2-Src-Map4k4-p38 MAPK axis.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.