Martina Lisnerova, Pavla Bartosova-Sojkova, Monika Burgerova, Ivan Fiala
{"title":"Unraveling the mystery of a myxozoan parasite of the trout: redescription of Chloromyxum schurovi.","authors":"Martina Lisnerova, Pavla Bartosova-Sojkova, Monika Burgerova, Ivan Fiala","doi":"10.14411/fp.2024.015","DOIUrl":null,"url":null,"abstract":"<p><p>Myxozoans are microscopical parasites widely distributed in fish, with over 2,600 described species, but their actual diversity is still underestimated. Among salmonids, more than 70 myxozoan species have been identified. This study focuses on species of Chloromyxum Mingazzini, 1890 that infect salmonid kidneys, particularly C. majori Yasutake et Wood, 1957 and C. schurovi Shulman et Ieshko, 2003. Despite their similar spore morphology, they exhibit distinct host preferences, tissue affinities and geographical distributions. Chloromyxum schurovi predominantly infects the renal tubules of Salmo salar Linnaues and S. trutta Linnaeus in Europe, while C. majori targets the glomeruli of Oncorhynchus mykiss (Walbaum) and O. tshawytscha (Walbaum) in North America. The sequence data for C. majori and C. schurovi have been either missing or questionable. In our study, we examined the kidneys of two salmonid species for chloromyxid infections, using both morphological and molecular data to characterise Chloromyxum species in salmonids. The sequence of C. schurovi obtained in our study did not match the previously published parasite data. Instead, it clustered as an independent lineage sister to the Paramyxidium Freeman et Kristmundsson, 2018 clade gathering the species from various fish organs, including the urinary tract. Our findings clarified the taxonomic origin of the previous C. schurovi sequence as Myxidium giardi Cépède, 1906, highlighting the risks associated with the presence of myxozoan blood stages in the bloodstream of their fish host and the challenges of non-specific PCR amplification. We redescribe C. schurovi, thus contributing to a better understanding of the diversity and phylogeny of kidney-infecting species of Chloromyxum.</p>","PeriodicalId":55154,"journal":{"name":"Folia Parasitologica","volume":"71 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Parasitologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14411/fp.2024.015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myxozoans are microscopical parasites widely distributed in fish, with over 2,600 described species, but their actual diversity is still underestimated. Among salmonids, more than 70 myxozoan species have been identified. This study focuses on species of Chloromyxum Mingazzini, 1890 that infect salmonid kidneys, particularly C. majori Yasutake et Wood, 1957 and C. schurovi Shulman et Ieshko, 2003. Despite their similar spore morphology, they exhibit distinct host preferences, tissue affinities and geographical distributions. Chloromyxum schurovi predominantly infects the renal tubules of Salmo salar Linnaues and S. trutta Linnaeus in Europe, while C. majori targets the glomeruli of Oncorhynchus mykiss (Walbaum) and O. tshawytscha (Walbaum) in North America. The sequence data for C. majori and C. schurovi have been either missing or questionable. In our study, we examined the kidneys of two salmonid species for chloromyxid infections, using both morphological and molecular data to characterise Chloromyxum species in salmonids. The sequence of C. schurovi obtained in our study did not match the previously published parasite data. Instead, it clustered as an independent lineage sister to the Paramyxidium Freeman et Kristmundsson, 2018 clade gathering the species from various fish organs, including the urinary tract. Our findings clarified the taxonomic origin of the previous C. schurovi sequence as Myxidium giardi Cépède, 1906, highlighting the risks associated with the presence of myxozoan blood stages in the bloodstream of their fish host and the challenges of non-specific PCR amplification. We redescribe C. schurovi, thus contributing to a better understanding of the diversity and phylogeny of kidney-infecting species of Chloromyxum.
期刊介绍:
FOLIA PARASITOLOGICA, issued in online versions, is an international journal that covers the whole field of general, systematic, ecological and experimental parasitology. It publishes original research papers, research notes and review articles. Contributions from all branches of animal parasitology, such as morphology, taxonomy, biology, biochemistry, physiology, immunology, molecular biology and evolution of parasites, and host-parasite relationships, are eligible. Novelty and importance in the international (not local or regional) context are required. New geographical records of parasites, records of new hosts, regional parasite and/or host surveys (if they constitute the principal substance of manuscript), local/regional prevalence surveys of diseases, local/regional studies on epidemiology of well known diseases and of parasite impact on human/animal health, case reports, routine clinical studies and testing of established diagnostic or treatment procedures, will not be considered. One species description will also not be considered unless they include more general information, such as new diagnostic characters, host-parasite associations, phylogenetic implications, etc. Manuscripts found suitable on submission will be reviewed by at least two reviewers.