Regional Differences in Vascular Graft Degradation and Regeneration Contribute to Dilation.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Tissue Engineering Part A Pub Date : 2024-10-09 DOI:10.1089/ten.TEA.2024.0082
Ziyu Wang, Suzanne M Mithieux, Kevin M Blum, Tai Yi, Yuichi Matsuzaki, Nguyen T H Pham, Brian S Hawkett, Toshiharu Shinoka, Christopher K Breuer, Anthony S Weiss
{"title":"Regional Differences in Vascular Graft Degradation and Regeneration Contribute to Dilation.","authors":"Ziyu Wang, Suzanne M Mithieux, Kevin M Blum, Tai Yi, Yuichi Matsuzaki, Nguyen T H Pham, Brian S Hawkett, Toshiharu Shinoka, Christopher K Breuer, Anthony S Weiss","doi":"10.1089/ten.TEA.2024.0082","DOIUrl":null,"url":null,"abstract":"<p><p>Severe coronary artery disease is often treated with a coronary artery bypass graft using an autologous blood vessel. When this is not available, a commercially available synthetic graft can be used as an alternative but is associated with high failure rates and complications. Therefore, the research focus has shifted toward the development of biodegradable, regenerative vascular grafts that can convert into neoarteries. We previously developed an electrospun tropoelastin (TE)-polyglycerol sebacate (PGS) vascular graft that rapidly regenerated into a neoartery, with a cellular composition and extracellular matrix approximating the native aorta. We noted, however, that the TE-PGS graft underwent dilation until sufficient neotissue had been regenerated. This study investigated the mechanisms behind the observed dilation following TE-PGS vascular graft implantation in mice. We saw more pronounced dilation at the graft middle compared with the graft proximal and graft distal regions at 8 weeks postimplantation. Histological analysis revealed less degradation at the graft middle, although the remaining graft material appeared pitted, suggesting compromised structural and mechanical integrity. We also observed delayed cellular infiltration and extracellular matrix (ECM) deposition at the graft middle, corresponding with the area's reduced ability to resist dilation. In contrast, the graft proximal region exhibited greater degradation and significantly enhanced cellular infiltration and ECM regeneration. The nonuniform dilation was attributed to the combined effect of the regional differences in graft degradation and arterial regeneration. Consideration of these findings is crucial for graft optimization prior to its use in clinical applications.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2024.0082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Severe coronary artery disease is often treated with a coronary artery bypass graft using an autologous blood vessel. When this is not available, a commercially available synthetic graft can be used as an alternative but is associated with high failure rates and complications. Therefore, the research focus has shifted toward the development of biodegradable, regenerative vascular grafts that can convert into neoarteries. We previously developed an electrospun tropoelastin (TE)-polyglycerol sebacate (PGS) vascular graft that rapidly regenerated into a neoartery, with a cellular composition and extracellular matrix approximating the native aorta. We noted, however, that the TE-PGS graft underwent dilation until sufficient neotissue had been regenerated. This study investigated the mechanisms behind the observed dilation following TE-PGS vascular graft implantation in mice. We saw more pronounced dilation at the graft middle compared with the graft proximal and graft distal regions at 8 weeks postimplantation. Histological analysis revealed less degradation at the graft middle, although the remaining graft material appeared pitted, suggesting compromised structural and mechanical integrity. We also observed delayed cellular infiltration and extracellular matrix (ECM) deposition at the graft middle, corresponding with the area's reduced ability to resist dilation. In contrast, the graft proximal region exhibited greater degradation and significantly enhanced cellular infiltration and ECM regeneration. The nonuniform dilation was attributed to the combined effect of the regional differences in graft degradation and arterial regeneration. Consideration of these findings is crucial for graft optimization prior to its use in clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管移植物降解和再生的区域差异是造成扩张的原因。
严重的冠状动脉疾病通常采用自体血管冠状动脉旁路移植术进行治疗。在无法使用自体血管时,可使用市售的合成血管作为替代,但其失败率和并发症较高。因此,研究重点已转向开发可转化为新动脉的生物可降解再生血管移植物。我们之前开发了一种电纺特罗波弹性蛋白(TE)-聚甘油癸二酸酯(PGS)血管移植物,它能迅速再生为新动脉,其细胞成分和细胞外基质与原生主动脉近似。但我们注意到,TE-PGS 移植血管在再生出足够的新组织之前一直在扩张。本研究调查了在小鼠体内植入 TE-PGS 血管移植物后观察到的扩张现象背后的机制。与移植近端和移植远端相比,我们发现在移植后 8 周,移植体中部的扩张更为明显。组织学分析表明,移植物中部的降解程度较低,但剩余的移植物材料出现凹陷,表明其结构和机械完整性受到损害。我们还观察到移植物中部的细胞浸润和细胞外基质(ECM)沉积延迟,这与该区域抵抗扩张的能力降低有关。相比之下,移植物近端区域的降解程度更高,细胞浸润和细胞外基质再生能力明显增强。不均匀扩张是移植物降解和动脉再生的区域差异共同作用的结果。考虑这些发现对于移植物在临床应用前的优化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
期刊最新文献
Perspectives on Recent Developments and Directions in Tissue Engineering and Regenerative Medicine. Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury. Decellularized Extracellular Matrix Improves Mesenchymal Stromal Cell Spheroid Response to Chondrogenic Stimuli. Differentiated and Untreated Juvenile Chondrocyte Sheets Regenerate Cartilage Similarly In Vivo. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1