Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping.

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2024-09-18 DOI:10.1186/s41205-024-00235-w
Lorenzo Civilla, Philippe Dodier, Maria Chiara Palumbo, Alberto C L Redaelli, Markus Koenigshofer, Ewald Unger, Torstein R Meling, Nikolay Velinov, Karl Rössler, Francesco Moscato
{"title":"Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping.","authors":"Lorenzo Civilla, Philippe Dodier, Maria Chiara Palumbo, Alberto C L Redaelli, Markus Koenigshofer, Ewald Unger, Torstein R Meling, Nikolay Velinov, Karl Rössler, Francesco Moscato","doi":"10.1186/s41205-024-00235-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microsurgical clipping is a delicate neurosurgical procedure used to treat complex Unruptured Intracranial Aneurysms (UIAs) whose outcome is dependent on surgeon's experience. Simulations are emerging as excellent complements to standard training, but their adoption is limited by the realism they provide. The aim of this study was to develop and validate a microsurgical clipping simulator platform.</p><p><strong>Methods: </strong>Physical and holographic simulators of UIA clipping have been developed. The physical phantom consisted of a 3D printed hard skull and five (n = 5) rapidly interchangeable, perfused and fluorescence compatible 3D printed aneurysm silicone phantoms. The holographic clipping simulation included a real-time finite-element-model of the aneurysm sac, allowing interaction with a virtual clip and its occlusion. Validity, usability, usefulness and applications of the simulators have been assessed through clinical scores for aneurysm occlusion and a questionnaire study involving 14 neurosurgical residents (R) and specialists (S) for both the physical (<sub>p</sub>) and holographic (<sub>h</sub>) simulators by scores going from 1 (very poor) to 5 (excellent).</p><p><strong>Results: </strong>The physical simulator allowed to replicate successfully and accurately the patient-specific anatomy. UIA phantoms were manufactured with an average dimensional deviation from design of 0.096 mm and a dome thickness of 0.41 ± 0.11 mm. The holographic simulation executed at 25-50 fps allowing to gain unique insights on the anatomy and testing of the application of several clips without manufacturing costs. Aneurysm closure in the physical model evaluated by fluorescence simulation and post-operative CT revealed Raymond 1 (full) occlusion respectively in 68.89% and 73.33% of the cases. For both the simulators content validity, construct validity, usability and usefulness have been observed, with the highest scores observed in clip selection usefulness R<sub>p</sub>=4.78, S<sub>p</sub>=5.00 and R<sub>h</sub>=4.00, S<sub>h</sub>=5.00 for the printed and holographic simulators.</p><p><strong>Conclusions: </strong>Both the physical and the holographic simulators were validated and resulted usable and useful in selecting valid clips and discarding unsuitable ones. Thus, they represent ideal platforms for realistic patient-specific simulation-based training of neurosurgical residents and hold the potential for further applications in preoperative planning.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-024-00235-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microsurgical clipping is a delicate neurosurgical procedure used to treat complex Unruptured Intracranial Aneurysms (UIAs) whose outcome is dependent on surgeon's experience. Simulations are emerging as excellent complements to standard training, but their adoption is limited by the realism they provide. The aim of this study was to develop and validate a microsurgical clipping simulator platform.

Methods: Physical and holographic simulators of UIA clipping have been developed. The physical phantom consisted of a 3D printed hard skull and five (n = 5) rapidly interchangeable, perfused and fluorescence compatible 3D printed aneurysm silicone phantoms. The holographic clipping simulation included a real-time finite-element-model of the aneurysm sac, allowing interaction with a virtual clip and its occlusion. Validity, usability, usefulness and applications of the simulators have been assessed through clinical scores for aneurysm occlusion and a questionnaire study involving 14 neurosurgical residents (R) and specialists (S) for both the physical (p) and holographic (h) simulators by scores going from 1 (very poor) to 5 (excellent).

Results: The physical simulator allowed to replicate successfully and accurately the patient-specific anatomy. UIA phantoms were manufactured with an average dimensional deviation from design of 0.096 mm and a dome thickness of 0.41 ± 0.11 mm. The holographic simulation executed at 25-50 fps allowing to gain unique insights on the anatomy and testing of the application of several clips without manufacturing costs. Aneurysm closure in the physical model evaluated by fluorescence simulation and post-operative CT revealed Raymond 1 (full) occlusion respectively in 68.89% and 73.33% of the cases. For both the simulators content validity, construct validity, usability and usefulness have been observed, with the highest scores observed in clip selection usefulness Rp=4.78, Sp=5.00 and Rh=4.00, Sh=5.00 for the printed and holographic simulators.

Conclusions: Both the physical and the holographic simulators were validated and resulted usable and useful in selecting valid clips and discarding unsuitable ones. Thus, they represent ideal platforms for realistic patient-specific simulation-based training of neurosurgical residents and hold the potential for further applications in preoperative planning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping. Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device. Metamaterial design for aortic aneurysm simulation using 3D printing. 3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies. Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1