Yevgeniy V Serebrenik, Deepak Mani, Timothé Maujean, George M Burslem, Ophir Shalem
{"title":"Pooled endogenous protein tagging and recruitment for systematic profiling of protein function.","authors":"Yevgeniy V Serebrenik, Deepak Mani, Timothé Maujean, George M Burslem, Ophir Shalem","doi":"10.1016/j.xgen.2024.100651","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100651"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging field of induced proximity therapeutics, which involves designing molecules to bring together an effector and target protein-typically to induce target degradation-is rapidly advancing. However, its progress is constrained by the lack of scalable and unbiased tools to explore effector-target protein interactions. We combine pooled endogenous gene tagging using a ligand-binding domain with generic small-molecule-based recruitment to screen for induction of protein proximity. We apply this methodology to identify effectors for degradation in two orthogonal screens: using fluorescence to monitor target levels and a cellular growth that depends on the degradation of an essential protein. Our screens revealed new effector proteins for degradation, including previously established examples, and converged on members of the C-terminal-to-LisH (CTLH) complex. We introduce a platform for pooled induction of endogenous protein-protein interactions to expand our toolset of effector proteins for protein degradation and other forms of induced proximity.