Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.

Frontiers in radiology Pub Date : 2024-09-05 eCollection Date: 2024-01-01 DOI:10.3389/fradi.2024.1332535
Paniz Sabeghi, Ketki K Kinkar, Gloria Del Rosario Castaneda, Liesl S Eibschutz, Brandon K K Fields, Bino A Varghese, Dakshesh B Patel, Ali Gholamrezanezhad
{"title":"Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.","authors":"Paniz Sabeghi, Ketki K Kinkar, Gloria Del Rosario Castaneda, Liesl S Eibschutz, Brandon K K Fields, Bino A Varghese, Dakshesh B Patel, Ali Gholamrezanezhad","doi":"10.3389/fradi.2024.1332535","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2024.1332535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能和机器学习在骨和软组织肿瘤成像中的应用。
人工智能(AI)和机器学习的最新进展为肌肉骨骼放射学提供了大量机会,有可能提高诊断准确性、工作流程效率和预测建模能力。人工智能工具有能力协助放射医师完成图像分割、病变检测等多项任务。在骨和软组织肿瘤成像方面,放射组学和深度学习在恶性肿瘤分层、分级、预后和治疗计划方面大有可为。然而,在临床转化之前,还需要解决标准化、数据整合和患者数据伦理问题等挑战。在肌肉骨骼肿瘤学领域,由于疾病发病率有限,人工智能在开发强大算法方面也面临障碍。虽然许多计划旨在开发多任务人工智能系统,但多学科合作对于人工智能成功融入临床实践至关重要。要充分发挥人工智能在提高诊断准确性和促进患者护理方面的潜力,就必须采取强有力的方法应对挑战并体现道德实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art. Seven-tesla magnetic resonance imaging of the nervus terminalis, olfactory tracts, and olfactory bulbs in COVID-19 patients with anosmia and hypogeusia. Intranodal lymphangiography combined with foam sclerotherapy embolization of thoracic duct in the treatment of postoperative chylous leakage for thyroid carcinoma: a case report and review. Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1