Population Digital Health: Continuous Health Monitoring and Profiling at Scale.

Naser Hossein Motlagh, Agustin Zuniga, Ngoc Thi Nguyen, Huber Flores, Jiangtao Wang, Sasu Tarkoma, Mattia Prosperi, Sumi Helal, Petteri Nurmi
{"title":"Population Digital Health: Continuous Health Monitoring and Profiling at Scale.","authors":"Naser Hossein Motlagh, Agustin Zuniga, Ngoc Thi Nguyen, Huber Flores, Jiangtao Wang, Sasu Tarkoma, Mattia Prosperi, Sumi Helal, Petteri Nurmi","doi":"10.2196/60261","DOIUrl":null,"url":null,"abstract":"<p><strong>Unstructured: </strong>Our article provides a viewpoint on population digital health - the use of digital health information sourced from Health IoT and wearable devices for population health modeling - as an emerging research initiative for offering an integrated approach for continuous monitoring and profiling of diseases and health conditions at multiple spatial resolutions. Global healthcare systems are increasingly challenged by rising costs as life expectancy and the average age of people increases. Population digital health looks at how wearables, IoT, and AI can offer an alternative approach for understanding health issues within the population, significantly reducing cost and improving the completeness of information collection by current practices, such as electronic health records - including integration with mhealth personal health records - or survey instruments. This significantly improves our collective understanding of public health priorities, including factors affecting disease prevalence, occurrence and risk factors, ultimately helping to design targeted programmatic interventions apt at reducing the cost of healthcare provision and leading to better life quality, also reducing disparities. Realizing this vision requires overcoming several unique challenges, including data quality, availability, sparsity, and social and technical barriers in the use of health technologies. Our article highlights these challenges and offers solutions and empirical evidence to demonstrate how these challenges can be addressed. As population digital health addresses the impact large-scale sensor data collection and AI can have on improving healthcare delivery and society, we sincerely believe the topic is well within the journal's scope and would be highly interesting to its readership. Our experiments using a combination of real-world health IoT data and electronic health records also highlight the potential cross-disciplinary benefits of population digital health and challenge the research community to address the vision and challenges. Therefore, our article serves the dual purpose of challenging the research community and offering insights into the use of AI and sensor data, and how population digital health can serve as a catalyst for further research by the broader research community.</p>","PeriodicalId":74345,"journal":{"name":"Online journal of public health informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online journal of public health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/60261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unstructured: Our article provides a viewpoint on population digital health - the use of digital health information sourced from Health IoT and wearable devices for population health modeling - as an emerging research initiative for offering an integrated approach for continuous monitoring and profiling of diseases and health conditions at multiple spatial resolutions. Global healthcare systems are increasingly challenged by rising costs as life expectancy and the average age of people increases. Population digital health looks at how wearables, IoT, and AI can offer an alternative approach for understanding health issues within the population, significantly reducing cost and improving the completeness of information collection by current practices, such as electronic health records - including integration with mhealth personal health records - or survey instruments. This significantly improves our collective understanding of public health priorities, including factors affecting disease prevalence, occurrence and risk factors, ultimately helping to design targeted programmatic interventions apt at reducing the cost of healthcare provision and leading to better life quality, also reducing disparities. Realizing this vision requires overcoming several unique challenges, including data quality, availability, sparsity, and social and technical barriers in the use of health technologies. Our article highlights these challenges and offers solutions and empirical evidence to demonstrate how these challenges can be addressed. As population digital health addresses the impact large-scale sensor data collection and AI can have on improving healthcare delivery and society, we sincerely believe the topic is well within the journal's scope and would be highly interesting to its readership. Our experiments using a combination of real-world health IoT data and electronic health records also highlight the potential cross-disciplinary benefits of population digital health and challenge the research community to address the vision and challenges. Therefore, our article serves the dual purpose of challenging the research community and offering insights into the use of AI and sensor data, and how population digital health can serve as a catalyst for further research by the broader research community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人口数字健康:大规模持续健康监测和分析。
非结构化:我们的文章提供了关于人口数字健康的观点--将来自健康物联网和可穿戴设备的数字健康信息用于人口健康建模--作为一种新兴的研究举措,为在多个空间分辨率上对疾病和健康状况进行持续监测和剖析提供了一种综合方法。随着预期寿命和平均年龄的增长,全球医疗保健系统面临的成本上升挑战日益严峻。人口数字健康研究了可穿戴设备、物联网和人工智能如何为了解人口中的健康问题提供另一种方法,大大降低成本,并提高当前做法(如电子健康记录,包括与移动医疗个人健康记录的整合)或调查工具收集信息的完整性。这大大提高了我们对公共卫生优先事项的集体认识,包括影响疾病流行、发生和风险因素的因素,最终有助于设计有针对性的计划干预措施,以降低医疗保健服务的成本,提高生活质量,同时减少差异。要实现这一愿景,需要克服几个独特的挑战,包括数据质量、可用性、稀缺性以及在使用医疗技术方面的社会和技术障碍。我们的文章强调了这些挑战,并提供了解决方案和经验证据,以展示如何应对这些挑战。由于人口数字健康涉及大规模传感器数据收集和人工智能对改善医疗保健服务和社会的影响,我们真诚地相信这一主题完全符合期刊的范围,并将引起读者的极大兴趣。我们结合现实世界中的健康物联网数据和电子健康记录进行的实验也凸显了人口数字健康潜在的跨学科优势,并对研究界提出了挑战,以应对愿景和挑战。因此,我们的文章具有双重目的:既向研究界提出挑战,又就人工智能和传感器数据的使用以及人口数字健康如何成为更广泛研究界进一步研究的催化剂提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Population Digital Health: Continuous Health Monitoring and Profiling at Scale. Rank Ordered Design Attributes for Health Care Dashboards Including Artificial Intelligence: Usability Study. Attitudes of Health Professionals Toward Digital Health Data Security in Northwest Ethiopia: Cross-Sectional Study. Contact Tracing Different Age Groups During the COVID-19 Pandemic: Retrospective Study From South-West Germany. Data Analytics to Support Policy Making for Noncommunicable Diseases: Scoping Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1