Nanofiber-Based Drug Delivery Systems: A Review on Its Applications, Challenges, and Envisioning Future Perspectives.

Munerah Alfadhel
{"title":"Nanofiber-Based Drug Delivery Systems: A Review on Its Applications, Challenges, and Envisioning Future Perspectives.","authors":"Munerah Alfadhel","doi":"10.2174/0115672018325012240902122946","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterials, especially nanofibers, hold considerable promise as drug delivery systems (DDS) by providing targeted administration of drugs due to their unique properties, such as large surface area, high porosity, and mechanical robustness. Nanofibers can be fabricated using various techniques like electrospinning, self-assembly, phase separation, and template synthesis, offering properties such as adjustable size, shape, high precision, and biodegradability. Additionally, features such as multiple target functionalization, controlled release of the drug, and prolonged circulation of the drug make nanofibers particularly suitable for biomedical applications, including drug delivery, tissue regeneration, and biosensing. This comprehensive review explores the characteristics, types, fabrication methods, and applications of nanofibers. Diverse types of polymer nanofibers are used in drug delivery, such as blended nanofibers, core-shell nanofibers, and layer-by-layer assembly, each demonstrating their own advantages in controlled drug release and targeted therapy. Electrospun nanofibers are extensively utilized in biomedical applications due to their superior mechanical performance and high porosity and advancements in coaxial electrospinning enabling the fabrication of core-shell nanofibers, offering controlled drug release kinetics and protection of loaded molecules. These nanofibers demonstrate enhanced bioactivity and biocompatibility and can find application in tissue engineering. Furthermore, this review addresses the challenges associated with nanofiber production, including reproducibility and scalability. Nanofibers exhibit the potential to revolutionize medical treatment across diverse therapeutic areas. Future research directions and challenges in nanofiber-based drug delivery discussed in this review offer guidance for further advancements in this rapidly evolving field.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018325012240902122946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterials, especially nanofibers, hold considerable promise as drug delivery systems (DDS) by providing targeted administration of drugs due to their unique properties, such as large surface area, high porosity, and mechanical robustness. Nanofibers can be fabricated using various techniques like electrospinning, self-assembly, phase separation, and template synthesis, offering properties such as adjustable size, shape, high precision, and biodegradability. Additionally, features such as multiple target functionalization, controlled release of the drug, and prolonged circulation of the drug make nanofibers particularly suitable for biomedical applications, including drug delivery, tissue regeneration, and biosensing. This comprehensive review explores the characteristics, types, fabrication methods, and applications of nanofibers. Diverse types of polymer nanofibers are used in drug delivery, such as blended nanofibers, core-shell nanofibers, and layer-by-layer assembly, each demonstrating their own advantages in controlled drug release and targeted therapy. Electrospun nanofibers are extensively utilized in biomedical applications due to their superior mechanical performance and high porosity and advancements in coaxial electrospinning enabling the fabrication of core-shell nanofibers, offering controlled drug release kinetics and protection of loaded molecules. These nanofibers demonstrate enhanced bioactivity and biocompatibility and can find application in tissue engineering. Furthermore, this review addresses the challenges associated with nanofiber production, including reproducibility and scalability. Nanofibers exhibit the potential to revolutionize medical treatment across diverse therapeutic areas. Future research directions and challenges in nanofiber-based drug delivery discussed in this review offer guidance for further advancements in this rapidly evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米纤维给药系统:纳米纤维给药系统:应用综述、挑战与未来展望》。
纳米材料,尤其是纳米纤维,因其独特的性能(如大表面积、高孔隙率和机械坚固性),可提供靶向给药,在药物输送系统(DDS)中大有可为。纳米纤维可通过电纺丝、自组装、相分离和模板合成等多种技术制成,具有尺寸可调、形状可变、精度高和可生物降解等特性。此外,纳米纤维还具有多靶点功能化、药物释放可控、药物循环时间长等特点,因此特别适合生物医学应用,包括药物输送、组织再生和生物传感。本综述探讨了纳米纤维的特点、类型、制造方法和应用。用于给药的聚合物纳米纤维种类繁多,如混合纳米纤维、核壳纳米纤维和逐层组装纳米纤维,它们在药物控释和靶向治疗方面各有优势。电纺纳米纤维因其优越的机械性能和高孔隙率而被广泛应用于生物医学领域,同轴电纺技术的进步使核壳纳米纤维的制造成为可能,从而提供可控的药物释放动力学和对负载分子的保护。这些纳米纤维具有更强的生物活性和生物相容性,可应用于组织工程。此外,本综述还探讨了与纳米纤维生产相关的挑战,包括可重复性和可扩展性。纳米纤维具有在不同治疗领域彻底改变医疗方法的潜力。本综述中讨论的基于纳米纤维的药物输送的未来研究方向和挑战为这一快速发展领域的进一步进步提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment. Synergistic Antibacterial Effect of ZnO Nanoparticles and Antibiotics against Multidrug-resistant Biofilm Bacteria. Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1