Individualized pretest risk estimates to guide treatment decisions in patients with clinical high risk for psychotic disorders.

Elodie Sprüngli-Toffel, Erich Studerus, Logos Curtis, Caroline Conchon, Luis Alameda, Barbara Bailey, Camille Caron, Carmina Haase, Julia Gros, Evelyn Herbrecht, Christian G Huber, Anita Riecher-Rössler, Philippe Conus, Alessandra Solida, Marco Armando, Afroditi Kapsaridi, Mathieu Mercapide Ducommun, Paul Klauser, Kerstin Jessica Plessen, Sébastien Urben, Anne Edan, Nathalie Nanzer, Ana Liso Navarro, Maude Schneider, Davina Genoud, Chantal Michel, Jochen Kindler, Michael Kaess, Dominic Oliver, Paolo Fusar-Poli, Stefan Borgwardt, Christina Andreou
{"title":"Individualized pretest risk estimates to guide treatment decisions in patients with clinical high risk for psychotic disorders.","authors":"Elodie Sprüngli-Toffel, Erich Studerus, Logos Curtis, Caroline Conchon, Luis Alameda, Barbara Bailey, Camille Caron, Carmina Haase, Julia Gros, Evelyn Herbrecht, Christian G Huber, Anita Riecher-Rössler, Philippe Conus, Alessandra Solida, Marco Armando, Afroditi Kapsaridi, Mathieu Mercapide Ducommun, Paul Klauser, Kerstin Jessica Plessen, Sébastien Urben, Anne Edan, Nathalie Nanzer, Ana Liso Navarro, Maude Schneider, Davina Genoud, Chantal Michel, Jochen Kindler, Michael Kaess, Dominic Oliver, Paolo Fusar-Poli, Stefan Borgwardt, Christina Andreou","doi":"10.1016/j.sjpmh.2024.09.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinical high risk for psychosis (CHR) states are associated with an increased risk of transition to psychosis. However, the predictive value of CHR screening interviews is dependent on pretest risk enrichment in referred patients. This poses a major obstacle to CHR outreach campaigns since they invariably lead to risk dilution through enhanced awareness. A potential compensatory strategy is to use estimates of individual pretest risk as a 'gatekeeper' for specialized assessment. We aimed to test a risk stratification model previously developed in London, UK (OASIS) and to train a new predictive model for the Swiss population.</p><p><strong>Method: </strong>The sample was composed of 513 individuals referred for CHR assessment from six Swiss early psychosis detection services. Sociodemographic variables available at referral were used as predictors whereas the outcome variable was transition to psychosis.</p><p><strong>Results: </strong>Replication of the risk stratification model developed in OASIS resulted in poor performance (Harrel's c=0.51). Retraining resulted in moderate discrimination (Harrel's c=0.67) which significantly differentiated between different risk groups. The lowest risk group had a cumulative transition incidence of 6.4% (CI: 0-23.1%) over two years.</p><p><strong>Conclusion: </strong>Failure to replicate the OASIS risk stratification model might reflect differences in the public health care systems and referral structures between Switzerland and London. Retraining resulted in a model with adequate discrimination performance. The developed model in combination with CHR assessment result, might be useful for identifying individuals with high pretest risk, who might benefit most from specialized intervention.</p>","PeriodicalId":101179,"journal":{"name":"Spanish Journal of Psychiatry and Mental Health","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Psychiatry and Mental Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.sjpmh.2024.09.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Clinical high risk for psychosis (CHR) states are associated with an increased risk of transition to psychosis. However, the predictive value of CHR screening interviews is dependent on pretest risk enrichment in referred patients. This poses a major obstacle to CHR outreach campaigns since they invariably lead to risk dilution through enhanced awareness. A potential compensatory strategy is to use estimates of individual pretest risk as a 'gatekeeper' for specialized assessment. We aimed to test a risk stratification model previously developed in London, UK (OASIS) and to train a new predictive model for the Swiss population.

Method: The sample was composed of 513 individuals referred for CHR assessment from six Swiss early psychosis detection services. Sociodemographic variables available at referral were used as predictors whereas the outcome variable was transition to psychosis.

Results: Replication of the risk stratification model developed in OASIS resulted in poor performance (Harrel's c=0.51). Retraining resulted in moderate discrimination (Harrel's c=0.67) which significantly differentiated between different risk groups. The lowest risk group had a cumulative transition incidence of 6.4% (CI: 0-23.1%) over two years.

Conclusion: Failure to replicate the OASIS risk stratification model might reflect differences in the public health care systems and referral structures between Switzerland and London. Retraining resulted in a model with adequate discrimination performance. The developed model in combination with CHR assessment result, might be useful for identifying individuals with high pretest risk, who might benefit most from specialized intervention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个体化测试前风险评估,为临床高危精神病患者的治疗决策提供指导。
导言:临床精神病高风险(CHR)状态与转为精神病的风险增加有关。然而,CHR 筛查面谈的预测价值取决于转介患者测试前的风险富集情况。这对 CHR 外展活动构成了重大障碍,因为这些活动总会通过提高认知度来稀释风险。一种潜在的补偿策略是使用个人检测前风险估计值作为专门评估的 "守门员"。我们的目的是测试之前在英国伦敦开发的风险分层模型(OASIS),并为瑞士人群训练一个新的预测模型:样本由瑞士六家早期精神病检测服务机构转介的 513 名接受 CHR 评估者组成。转介时的社会人口学变量被用作预测因子,而结果变量则是向精神病的转变:结果:复制在 OASIS 中开发的风险分层模型的效果不佳(Harrel's c = 0.51)。重新训练的结果是中度区分度(Harrel's c = 0.67),显著区分了不同的风险组别。最低风险组在两年内的累计转换发生率为 6.4% (CI: 0% - 23.1%):未能复制OASIS风险分层模型可能反映了瑞士和伦敦在公共医疗系统和转诊结构上的差异。重新训练后的模型具有足够的识别性能。所开发的模型与CHR评估结果相结合,可能有助于识别检测前风险较高的个体,这些个体可能从专门干预中获益最多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
0.00%
发文量
0
期刊最新文献
Climate change and mental health: The urgent warning of Brazil and Spain's 2024 catastrophic floods. Prediction of pharmacological response in OCD using machine learning techniques and clinical and neuropsychological variables. Luis Martín-Santos: A multidimensional psychiatrist. Meta-analysis of the effects of adjuvant drugs in co-occurring bipolar and substance use disorder Validation study of the Spanish brief version of TEMPS-A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1