Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction.

Aging biology Pub Date : 2024-01-01 Epub Date: 2024-06-26 DOI:10.59368/agingbio.20240028
Akshatha Ganne, Nirjal Mainali, Meenakshisundaram Balasubramaniam, Ramani Atluri, Sonu Pahal, Joseph Asante, Corey Nagel, Srikanth Vallurupalli, Robert J Shmookler Reis, Srinivas Ayyadevara
{"title":"Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction.","authors":"Akshatha Ganne, Nirjal Mainali, Meenakshisundaram Balasubramaniam, Ramani Atluri, Sonu Pahal, Joseph Asante, Corey Nagel, Srikanth Vallurupalli, Robert J Shmookler Reis, Srinivas Ayyadevara","doi":"10.59368/agingbio.20240028","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, <i>APOE</i>(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each <i>P</i><0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (<i>P</i><0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (<i>P</i><0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early \"lynchpin\" adhesion, prospectively reducing aggregate accrual and progression of ADRD.</p>","PeriodicalId":520022,"journal":{"name":"Aging biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59368/agingbio.20240028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依泽替米贝通过抑制 14-3-3G::Hexokinase 相互作用,减少模型系统中的聚集,从而将阿尔茨海默氏症和相关痴呆症的风险降低了七倍多。
认知障碍发展为阿尔茨海默病及相关痴呆症(ADRD)的诱因有很多,其中最主要的是年龄、APOE(ε4)等位基因、脑外伤、心脏病、高血压、肥胖/糖尿病和唐氏综合征。蛋白质聚集是神经退行性疾病的诊断依据,也可能是促进慢性神经炎症的诱因。我们从 ADRD 患者、心脏病患者和年龄匹配的对照组的死后海马中分离出了聚集体。通过高分辨率蛋白质组学(交联或不交联)对聚集体进行表征,发现心脏病和 ADRD 海马中的聚集体显著升高。六磷酸酶-1(HK1)和14-3-3G/γ蛋白以前曾与神经元信号转导和神经退行性病变有关,它们在ADRD和心脏病患者与对照组相比的聚集体中特别富集(各PPP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. Damage-Induced Senescent Immune Cells Regulate Regeneration of the Zebrafish Retina. Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1