Crack-tip cleavage/dislocation emission competition behaviors/mechanisms in magnesium: ALEFM prediction and atomic simulation

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2024-09-16 DOI:10.1016/j.ijplas.2024.104134
Jia-ping Ma , Lin Yuan , Ying-ying Zong , Ming-yi Zheng , De-bin Shan , Bin Guo
{"title":"Crack-tip cleavage/dislocation emission competition behaviors/mechanisms in magnesium: ALEFM prediction and atomic simulation","authors":"Jia-ping Ma ,&nbsp;Lin Yuan ,&nbsp;Ying-ying Zong ,&nbsp;Ming-yi Zheng ,&nbsp;De-bin Shan ,&nbsp;Bin Guo","doi":"10.1016/j.ijplas.2024.104134","DOIUrl":null,"url":null,"abstract":"<div><div>Structural properties and reliability of materials can be improved by increasing fracture toughness. At the atomic scale, the fracture is a material separation process, and the fracture toughness of materials is associated with the atomic-scale crack-tip behaviors/mechanisms. The crack-tip behaviors are relevant to the energy state of atoms in the system. Atomic thermal oscillation increases with increasing temperature, which may affect/alter the crack tip behaviors. This work is the first to investigate the temperature-dependent crack-tip cleavage/dislocation emitting competition in magnesium (Mg) using anisotropic linear elastic fracture mechanics theory, Density Functional Theory (DFT), and atomic simulation. Crack-tip behaviors are examined using a specially designed ‘K-field’ loads model. DFT calculations show that a single crystal system with lower entropy and higher Gibbs free energy implies stronger interatomic bonding that favors a higher <em>K<sub>Ic</sub></em>. Changes in the stress distribution initiate a brittle-ductile transition in crack-tip behavior. The ductile crack tip can be blunted by continuous crack-tip dislocations nucleation/slip, and the evolution of the ductile crack-tip geometry from sharp to semicircular structure significantly decreases the stress concentration at the crack tip. A new criterion of the crack-tip force vector is established, which reasonably explains the geometrical evolution of ductile crack tip where the angle <span><math><mi>θ</mi></math></span> between the crack plane and the slip plane is <span><math><mrow><msup><mn>0</mn><mo>∘</mo></msup><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><msup><mn>90</mn><mo>∘</mo></msup></mrow></math></span> and <span><math><mrow><mi>θ</mi><mrow></mrow><mo>=</mo><msup><mn>90</mn><mo>∘</mo></msup></mrow></math></span>. This work expands the atomic-scale brittle/ductile crack-tip behaviors/mechanisms of Mg, which provides a reference for crack-tip behavior analysis in engineering research.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"182 ","pages":"Article 104134"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structural properties and reliability of materials can be improved by increasing fracture toughness. At the atomic scale, the fracture is a material separation process, and the fracture toughness of materials is associated with the atomic-scale crack-tip behaviors/mechanisms. The crack-tip behaviors are relevant to the energy state of atoms in the system. Atomic thermal oscillation increases with increasing temperature, which may affect/alter the crack tip behaviors. This work is the first to investigate the temperature-dependent crack-tip cleavage/dislocation emitting competition in magnesium (Mg) using anisotropic linear elastic fracture mechanics theory, Density Functional Theory (DFT), and atomic simulation. Crack-tip behaviors are examined using a specially designed ‘K-field’ loads model. DFT calculations show that a single crystal system with lower entropy and higher Gibbs free energy implies stronger interatomic bonding that favors a higher KIc. Changes in the stress distribution initiate a brittle-ductile transition in crack-tip behavior. The ductile crack tip can be blunted by continuous crack-tip dislocations nucleation/slip, and the evolution of the ductile crack-tip geometry from sharp to semicircular structure significantly decreases the stress concentration at the crack tip. A new criterion of the crack-tip force vector is established, which reasonably explains the geometrical evolution of ductile crack tip where the angle θ between the crack plane and the slip plane is 0<θ<90 and θ=90. This work expands the atomic-scale brittle/ductile crack-tip behaviors/mechanisms of Mg, which provides a reference for crack-tip behavior analysis in engineering research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁的裂纹尖端裂解/错位发射竞争行为/机制:ALEFM 预测和原子模拟
通过提高断裂韧性可以改善材料的结构特性和可靠性。在原子尺度上,断裂是一种材料分离过程,材料的断裂韧性与原子尺度的裂纹尖端行为/机制有关。裂纹尖端行为与系统中原子的能量状态有关。原子热振荡随温度升高而增加,这可能会影响/改变裂纹尖端行为。本研究首次使用各向异性线性弹性断裂力学理论、密度泛函理论(DFT)和原子模拟研究了镁 (Mg) 中与温度相关的裂纹尖端裂解/位错发射竞争。利用专门设计的 "K-场 "载荷模型对裂纹尖端行为进行了研究。密度泛函理论计算表明,单晶体系统具有较低的熵和较高的吉布斯自由能,这意味着较强的原子间键合有利于较高的 KIc。应力分布的变化引发了裂纹尖端行为的脆性-韧性转变。韧性裂纹尖端可通过连续的裂纹尖端位错成核/滑移而变钝,韧性裂纹尖端的几何形状从尖锐结构演变为半圆形结构可显著降低裂纹尖端的应力集中。建立了一种新的裂纹尖端力矢量准则,合理解释了裂纹平面与滑移平面夹角θ为0∘<θ<90∘和θ=90∘时韧性裂纹尖端的几何演变。这项工作拓展了镁的原子尺度脆性/韧性裂纹尖端行为/机理,为工程研究中的裂纹尖端行为分析提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
A parallelised algorithm to identify arbitrary yield surfaces in multiscale analyses The Derivation of CRSS in pure Ti and Ti-Al Alloys Multiscale computational analysis of crack initiation at the grain boundaries in hydrogen-charged bi-crystalline alpha-iron Formation of core-shell nanoprecipitates and their effects on work hardening in an ultrahigh-strength stainless steel Hydrostatic pressure-mediated grain boundary smoothing and plastic deformability in high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1