{"title":"Regulating Monodispersity by Controlling Droplet Spacing.","authors":"Dheeraj Sapkota, Laura L A Adams","doi":"10.1021/acs.langmuir.4c02058","DOIUrl":null,"url":null,"abstract":"<p><p>We report a new method for regulating monodispersity in the generation of single emulsions. The spacing between two consecutive emulsions during their generation is used to identify monodisperse and polydisperse regimes, with monodispersity having a size dispersion of <9% as an upper limit. A theoretical fit to our data is also presented. Moreover, a phase diagram of drop diameter as a function of inner and outer fluid flow rates indicates optimal flow parameters for the production of monodisperse drops. Our findings emphasize the robustness of using droplet spacing as a controlled parameter in regulating monodispersity, despite geometric differences in microfluidic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We report a new method for regulating monodispersity in the generation of single emulsions. The spacing between two consecutive emulsions during their generation is used to identify monodisperse and polydisperse regimes, with monodispersity having a size dispersion of <9% as an upper limit. A theoretical fit to our data is also presented. Moreover, a phase diagram of drop diameter as a function of inner and outer fluid flow rates indicates optimal flow parameters for the production of monodisperse drops. Our findings emphasize the robustness of using droplet spacing as a controlled parameter in regulating monodispersity, despite geometric differences in microfluidic devices.