Scalable Li-Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-09-24 DOI:10.1002/cssc.202400615
Edoardo Barcaro, Vittorio Marangon, Dominic Bresser, Jusef Hassoun
{"title":"Scalable Li-Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode.","authors":"Edoardo Barcaro, Vittorio Marangon, Dominic Bresser, Jusef Hassoun","doi":"10.1002/cssc.202400615","DOIUrl":null,"url":null,"abstract":"<p><p>A Li-ion battery combines a cathode benefitting from Sn and MnO<sub>2</sub> with high sulfur content, and a lithiated anode including fumed silica, few layer graphene (FLG) and amorphous carbon. This battery is considered a scalable version of the system based on lithium-sulfur (Li-S) conversion, since it exploits at the anode the Li-ion electrochemistry instead of Li-metal stripping/deposition. Sn and MnO<sub>2</sub> are used as cathode additives to improve the electrochemical process, increase sulfur utilization, while mitigating the polysulfides loss typical of Li-S devices. The cathode demonstrates in half-cell a maximum capacity of ~1170 mAh g<sub>S</sub> <sup>-1</sup>, rate performance extended over 1 C, and retention of 250 cycles. The anode undergoes Li-(de)alloying with silicon, Li-(de)insertion into amorphous carbon, and Li-(de)intercalation through FLG, with capacity of 500 mAh g<sup>-1</sup> in half-cell, completely retained over 400 cycles. The full-cells are assembled by combining a sulfur cathode with active material loading up to 3 mg cm<sup>-2</sup> and lithiated version of the anode, achieved either using an electrochemical pathway or a chemical one. The cells deliver at C/5 initial capacity higher than 1000 mAh g<sub>S</sub> <sup>-1</sup>, retained for over ~40 % upon 400 cycles. The battery is considered a promising energy storage system for possible scaling-up in pouch or cylindrical cells.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400615","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A Li-ion battery combines a cathode benefitting from Sn and MnO2 with high sulfur content, and a lithiated anode including fumed silica, few layer graphene (FLG) and amorphous carbon. This battery is considered a scalable version of the system based on lithium-sulfur (Li-S) conversion, since it exploits at the anode the Li-ion electrochemistry instead of Li-metal stripping/deposition. Sn and MnO2 are used as cathode additives to improve the electrochemical process, increase sulfur utilization, while mitigating the polysulfides loss typical of Li-S devices. The cathode demonstrates in half-cell a maximum capacity of ~1170 mAh gS -1, rate performance extended over 1 C, and retention of 250 cycles. The anode undergoes Li-(de)alloying with silicon, Li-(de)insertion into amorphous carbon, and Li-(de)intercalation through FLG, with capacity of 500 mAh g-1 in half-cell, completely retained over 400 cycles. The full-cells are assembled by combining a sulfur cathode with active material loading up to 3 mg cm-2 and lithiated version of the anode, achieved either using an electrochemical pathway or a chemical one. The cells deliver at C/5 initial capacity higher than 1000 mAh gS -1, retained for over ~40 % upon 400 cycles. The battery is considered a promising energy storage system for possible scaling-up in pouch or cylindrical cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用金属/金属氧化物硫阴极和锂化氧化硅/碳阳极的可扩展锂离子电池。
锂离子电池结合了硫含量高的锡和二氧化锰阴极,以及包括气相二氧化硅、几层石墨烯(FLG)和无定形碳在内的锂化阳极。这种电池被认为是基于锂硫(Li-S)转换系统的可扩展版本,因为它在阳极利用了锂离子电化学,而不是锂金属剥离/沉积。锡和二氧化锰被用作阴极添加剂,以改善电化学过程,提高硫的利用率,同时减少锂-S 设备典型的多硫化物损失。该阴极在半电池中的最大容量约为 1170 mAh gS-1,速率性能超过 1 C,可保持 250 个循环。阳极与硅进行锂(脱)合金化,锂(脱)插入无定形碳,并通过 FLG 进行锂(脱)插层,半电池容量为 500 mAh g-1,在 400 个循环周期内完全保持不变。全电池是由活性材料含量高达 3 毫克厘米-2 的硫阴极和锂化阳极组合而成的,可通过电化学途径或化学途径实现。电池在 C/5 条件下的初始容量高于 1000 mAh gS -1 ,循环 400 次后仍能保持约 40% 以上的容量。这种电池被认为是一种很有前途的储能系统,可以在袋式电池或圆柱形电池中推广使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Challenges and Modification Strategies on High-voltage Layered Oxide Cathode for Sodium-Ion Batteries. One-pot, Solvent Free Synthesis of 2,5-Furandicarboxylic Acid from Deep Eutectic Mixtures of Sugars as Mediated by Bifunctional Catalyst. Scalable Li-Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode. Selective Covalent Basal Plane Modification as a Probe of Hydroxide Ion Conduction Pathways in Magnesium Aluminum Layered Double Hydroxides. Metal Doping Regulates Electrocatalysts Restructuring During Oxygen Evolution Reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1