Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-09-24 DOI:10.1007/s12013-024-01545-w
Ying Li, Wendi Wang, Zijian Liu, Guangjing Liu, Xiaobing Li
{"title":"Blockade of ITGA2/3/5 Promotes Adipogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells.","authors":"Ying Li, Wendi Wang, Zijian Liu, Guangjing Liu, Xiaobing Li","doi":"10.1007/s12013-024-01545-w","DOIUrl":null,"url":null,"abstract":"<p><p>The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01545-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integrin α (ITGA) subfamily genes play a fundamental role in various cancers. However, the potential mechanism and application values of ITGA genes in adipogenic differentiation of human adipose-derived stem cells (hADSCs) remain elusive. This study confirmed that ITGA2/3/5 mRNA expressions were repressed during adipogenesis. Blockade of ITGA2/3/5 enhanced adipogenic differentiation of hADSCs. Oil red O staining found that more lipid droplets were apparent in the ITGA2/3/5 inhibition group following 14 d adipogenic induction than in the control group. In addition, inhibition of ITGA2/3/5 promoted the expression of adipogenesis-related genes (PPAR-γ, C/EBPα, FABP4). Mechanistically, ITGA2/3/5 functioned by regulating the Rac1 signaling pathway, which reasonably explains ITGA2/3/5's role in adipogenic differentiation of hADSCs. Our studies suggest that blockades of ITGA2/3/5 promote the adipogenic differentiation of hADSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阻断 ITGA2/3/5 促进人脂肪间充质干细胞的成脂分化
整合素α(ITGA)亚家族基因在多种癌症中发挥着重要作用。然而,ITGA基因在人脂肪源性干细胞(hADSCs)成脂分化中的潜在机制和应用价值仍不明确。本研究证实,ITGA2/3/5 mRNA表达在脂肪生成过程中受到抑制。阻断ITGA2/3/5可促进hADSCs的成脂分化。油红 O 染色发现,在诱导成脂 14 d 后,ITGA2/3/5 抑制组比对照组有更多的脂滴。此外,抑制 ITGA2/3/5 可促进脂肪生成相关基因(PPAR-γ、C/EBPα、FABP4)的表达。从机理上讲,ITGA2/3/5是通过调节Rac1信号通路发挥作用的,这合理地解释了ITGA2/3/5在hADSCs成脂分化中的作用。我们的研究表明,阻断ITGA2/3/5可促进hADSCs的成脂分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Iron Overloading Potentiates the Antitumor Activity of 5-Fluorouracil by Promoting Apoptosis and Ferroptosis in Colorectal Cancer Cells. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Study on the Role of EPHB6 in Inhibiting the Malignant Progression of Cervical Cancer C33A Cells by Binding to CBX7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1