Pulsed electromagnetic fields attenuate human musculocutaneous nerve damage induced by biceps eccentric contractions.

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2024-09-24 DOI:10.1002/bem.22525
Karina Kouzaki, Koichi Nakazato
{"title":"Pulsed electromagnetic fields attenuate human musculocutaneous nerve damage induced by biceps eccentric contractions.","authors":"Karina Kouzaki, Koichi Nakazato","doi":"10.1002/bem.22525","DOIUrl":null,"url":null,"abstract":"<p><p>Pulsed electromagnetic field (PEMF) therapy, a noninvasive treatment, has shown promise in mitigating nerve damage. However, unaccustomed exercises, such as eccentric contractions (ECCs), can damage both muscle and nerve tissue. This study investigated whether magnetic stimulation (MS) with PEMF could aid in nerve recovery after ECCs in the elbow flexors. Twenty participants were randomly assigned to either a control (CNT) or an MS group. Following ECCs, we measured the latency of the M-wave in the musculocutaneous nerve as an indicator of nerve function. Additionally, isometric torque, range of motion, and muscle pain were assessed for muscle function. Interestingly, only the CNT group exhibited a significant increase in latency on Day 2 (p < 0.05). The MS group, on the other hand, displayed an earlier recovery trend in isometric torque, range of motion, and muscle soreness. Notably, muscle soreness significantly decreased immediately after MS treatment compared to pretreatment levels. These findings suggest that MS treatment can effectively attenuate nerve damage induced by ECCs exercise.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bem.22525","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsed electromagnetic field (PEMF) therapy, a noninvasive treatment, has shown promise in mitigating nerve damage. However, unaccustomed exercises, such as eccentric contractions (ECCs), can damage both muscle and nerve tissue. This study investigated whether magnetic stimulation (MS) with PEMF could aid in nerve recovery after ECCs in the elbow flexors. Twenty participants were randomly assigned to either a control (CNT) or an MS group. Following ECCs, we measured the latency of the M-wave in the musculocutaneous nerve as an indicator of nerve function. Additionally, isometric torque, range of motion, and muscle pain were assessed for muscle function. Interestingly, only the CNT group exhibited a significant increase in latency on Day 2 (p < 0.05). The MS group, on the other hand, displayed an earlier recovery trend in isometric torque, range of motion, and muscle soreness. Notably, muscle soreness significantly decreased immediately after MS treatment compared to pretreatment levels. These findings suggest that MS treatment can effectively attenuate nerve damage induced by ECCs exercise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲电磁场可减轻肱二头肌偏心收缩引起的人体肌皮神经损伤。
脉冲电磁场疗法(PEMF)是一种非侵入性治疗方法,在减轻神经损伤方面前景看好。然而,不习惯的运动,如偏心收缩(ECC),会同时损伤肌肉和神经组织。本研究调查了使用 PEMF 的磁刺激(MS)是否有助于肘部屈肌偏心收缩后的神经恢复。20 名参与者被随机分配到对照组(CNT)或 MS 组。ECC后,我们测量了肌皮神经M波的潜伏期,作为神经功能的指标。此外,我们还对肌肉功能的等长扭矩、活动范围和肌肉疼痛进行了评估。有趣的是,只有 CNT 组的潜伏期在第 2 天有显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
The effect of mobile phone electromagnetic fields on the human resting state wake EEG and event-related potential: A systematic review and meta-analysis. Issue Information Numerical and analytical inspection of magnetic field effects in the radical pair mechanism by a simplified rate equation model Action potential threshold variability for different electrostimulation models and its potential impact on occupational exposure limit values. Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1