Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-09-20 DOI:10.2174/0113816128326489240827100537
Ajay Kumar, Mahendra Singh Ashawat, Vinay Pandit, Pravin Kumar
{"title":"Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch.","authors":"Ajay Kumar, Mahendra Singh Ashawat, Vinay Pandit, Pravin Kumar","doi":"10.2174/0113816128326489240827100537","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways.</p><p><strong>Objective: </strong>Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders.</p><p><strong>Methodology: </strong>The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine.</p><p><strong>Conclusion: </strong>The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128326489240827100537","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways.

Objective: Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders.

Methodology: The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine.

Conclusion: The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物电子药物--当代治疗的新方法。
背景:生物电子药物旨在诊断和治疗多种疾病,包括癌症、类风湿性关节炎、炎症性肠病、肥胖症、糖尿病、哮喘、瘫痪、失明、出血、缺血、器官移植、心血管疾病和神经退行性疾病。生物电子医学的重点是神经系统的电信号。了解神经系统的调节作用,开发记录、激活或抑制神经信号的技术,从而影响特定的生物通路:生物电子医学是分子医学、神经科学和生物工程相互联系的一种新兴治疗方法。能够与中枢神经系统和外周神经系统进行沟通的神经刺激装置的问世,有可能彻底改变我们治疗疾病的方式。虽然早期的临床应用在很大程度上对整个神经有效,但我们的最终目标是建立可植入的微型闭环系统,精确识别和调节单个神经纤维,治疗各种疾病:方法:在 PubMed 和 Clinicaltrial.gov.in 等数据库中搜索有关生物电子医学的科学研究、综述和临床试验:结论:生物电子医学领域是当前的发展趋势。近年来,研究人员扩大了该领域的应用范围,开展了前景广阔的临床试验,并开始向患者提供疗法,从而为未来的重大进展奠定了基础。各国和各组织必须开展跨行业、跨地区的合作,营造促进该领域发展的氛围,制定相关准则,发挥该领域的预期优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Screening of Natural Compounds as Inhibitor of Mpro SARS-CoV-2 Protein; A Molecular Dynamics Approach. The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far. Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review. Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1