Introduction: Nanomedicine offers immense potential in the field of Central Nervous System (CNS) disorder treatment, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke.
Method: Through the utilization of nanotechnology-driven drug delivery systems, the efficacy of drugs can be amplified, their toxicity minimized, and their bioavailability increased, enabling them to effectively reach the intended site within the CNS. This review aims to examine the therapeutic possibilities that nanomedicine presents in addressing these debilitating disorders. This exploration entails an analysis of diverse nanotechnology- based approaches for CNS drug delivery, including polymeric nanoparticles, liposomes, dendrimers, and carbon nanotubes. Moreover, notable advancements in nanotechnology-based therapeutics for CNS disorders are highlighted, such as the application of nanoparticles for delivering curcumin in Alzheimer's disease, liposomes for delivering L-DOPA in Parkinson's disease, and dendrimers for delivering interferon-beta in multiple sclerosis.
Results: Additionally, the potential of nanotechnology-based approaches in the treatment of epilepsy and stroke is discussed. The review concludes by addressing the challenges faced and emphasizes the significant potential of clinical trials in enhancing drug delivery and future prospects in the development of nanotechnology- based therapeutics for CNS disorders.
Conclusion: Overall, the therapeutic potential of nanomedicine in CNS disorder treatment is vast, instilling optimism for the creation of safe and effective therapies for these devastating conditions.