首页 > 最新文献

Current pharmaceutical design最新文献

英文 中文
Screening of Natural Compounds as Inhibitor of Mpro SARS-CoV-2 Protein; A Molecular Dynamics Approach. 筛选天然化合物作为 Mpro SARS-CoV-2 蛋白的抑制剂;一种分子动力学方法。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-19 DOI: 10.2174/0113816128315762240828052002
Anum Javaid, Nousheen Bibi, Malik Siddique Mahmood, Hina Batool, Sana Batool, Arslan Hamid, Mahjabeen Saleem, Naeem Mahmood Ashraf, Tayyaba Afsar, Ali Almajwal, Suhail Razak

Background: New strains of SARS-CoV-2 are continually emerging worldwide. Recently, WHO warned of a severe new wave in Europe. Current vaccines cannot fully prevent reinfection in vaccinated individuals.

Aim: Given this issue, recent research focuses on new antiviral candidates with high efficacy and minimal side effects.

Objectives: Screen natural compounds as inhibitors of Mpro SARS-CoV-2 protein using molecular dynamics.

Methods: In this study, we have screened the potential of plant-based natural anti-viral compounds. A library of the 579 compounds was generated using currently available literature and online databases. All these compounds were screened based on their binding affinities as predicted by molecular docking analysis and compounds having binding affinity values ≤ -10 Kcal/mol were considered for analysis. Furthermore, from physicochemical assessment, drug-likeness initially nine compounds were identified as the antiviral targets for the selected viral proteins. After ADMET analysis and simulations, the compound 9064 with the lowest RMSD, Coul-SR interaction energy (-71.53 kJ/mol), and LJ-SR energy (-95.32 kJ/mol) was selected as the most stable drug candidate against COVID-19 main protease Mpro.

Results: The ΔG value, calculated using MMGBSA also revealed strong binding of the compound with Mpro. The selected antiviral compound 9064 is an antioxidant flavonoid (Catechin or Cianidanol), which was previously known to have significant immunomodulatory, anti-inflammatory, and antioxidant properties.

Conclusion: Considering the limitations of currently available vaccines, our study may provide new insight into potential drugs that may prevent SARS-CoV-2 infection in humans.

背景:世界各地不断出现新的 SARS-CoV-2 株系。最近,世卫组织警告说,欧洲将出现严重的新一轮感染。目的:鉴于这一问题,近期研究的重点是高效、副作用小的新型抗病毒候选药物:利用分子动力学筛选天然化合物作为 Mpro SARS-CoV-2 蛋白的抑制剂:在这项研究中,我们筛选了潜在的植物性天然抗病毒化合物。利用现有文献和在线数据库生成了一个包含 579 种化合物的化合物库。根据分子对接分析预测的结合亲和力对所有这些化合物进行了筛选,并考虑对结合亲和力值≤ -10 Kcal/mol 的化合物进行分析。此外,根据理化评估和药物相似性,初步确定了九种化合物作为所选病毒蛋白的抗病毒靶点。经过 ADMET 分析和模拟,RMSD、Coul-SR 作用能(-71.53 kJ/mol)和 LJ-SR 能(-95.32 kJ/mol)最低的化合物 9064 被选为对 COVID-19 主要蛋白酶 Mpro 最稳定的候选药物:使用 MMGBSA 计算的 ΔG 值也显示了化合物与 Mpro 的强结合力。被选中的抗病毒化合物 9064 是一种抗氧化类黄酮(儿茶素或鸦片烷醇),之前已知其具有显著的免疫调节、抗炎和抗氧化特性:结论:考虑到现有疫苗的局限性,我们的研究可能会为预防人类感染 SARS-CoV-2 的潜在药物提供新的见解。
{"title":"Screening of Natural Compounds as Inhibitor of Mpro SARS-CoV-2 Protein; A Molecular Dynamics Approach.","authors":"Anum Javaid, Nousheen Bibi, Malik Siddique Mahmood, Hina Batool, Sana Batool, Arslan Hamid, Mahjabeen Saleem, Naeem Mahmood Ashraf, Tayyaba Afsar, Ali Almajwal, Suhail Razak","doi":"10.2174/0113816128315762240828052002","DOIUrl":"https://doi.org/10.2174/0113816128315762240828052002","url":null,"abstract":"<p><strong>Background: </strong>New strains of SARS-CoV-2 are continually emerging worldwide. Recently, WHO warned of a severe new wave in Europe. Current vaccines cannot fully prevent reinfection in vaccinated individuals.</p><p><strong>Aim: </strong>Given this issue, recent research focuses on new antiviral candidates with high efficacy and minimal side effects.</p><p><strong>Objectives: </strong>Screen natural compounds as inhibitors of Mpro SARS-CoV-2 protein using molecular dynamics.</p><p><strong>Methods: </strong>In this study, we have screened the potential of plant-based natural anti-viral compounds. A library of the 579 compounds was generated using currently available literature and online databases. All these compounds were screened based on their binding affinities as predicted by molecular docking analysis and compounds having binding affinity values ≤ -10 Kcal/mol were considered for analysis. Furthermore, from physicochemical assessment, drug-likeness initially nine compounds were identified as the antiviral targets for the selected viral proteins. After ADMET analysis and simulations, the compound 9064 with the lowest RMSD, Coul-SR interaction energy (-71.53 kJ/mol), and LJ-SR energy (-95.32 kJ/mol) was selected as the most stable drug candidate against COVID-19 main protease Mpro.</p><p><strong>Results: </strong>The ΔG value, calculated using MMGBSA also revealed strong binding of the compound with Mpro. The selected antiviral compound 9064 is an antioxidant flavonoid (Catechin or Cianidanol), which was previously known to have significant immunomodulatory, anti-inflammatory, and antioxidant properties.</p><p><strong>Conclusion: </strong>Considering the limitations of currently available vaccines, our study may provide new insight into potential drugs that may prevent SARS-CoV-2 infection in humans.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far. COVID-19大流行中FLiRT变体的兴起:我们目前了解到的情况。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-14 DOI: 10.2174/0113816128355749241111045626
Md Sadique Hussain, Gaurav Gupta
{"title":"The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far.","authors":"Md Sadique Hussain, Gaurav Gupta","doi":"10.2174/0113816128355749241111045626","DOIUrl":"10.2174/0113816128355749241111045626","url":null,"abstract":"","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. 针对 SARS-CoV-2 Omicron 变体的中和单克隆抗体 (nMAbs) 的治疗潜力。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-13 DOI: 10.2174/0113816128334441241108050528
Pijus Parua, Somnath Ghosh, Koushik Jana, Arnab Seth, Biplab Debnath, Saroj Kumar Rout, Manoj Kumar Sarangi, Rasmita Dash, Jitu Halder, Tushar Kanti Rajwar, Deepak Pradhan, Vineet Kumar Rai, Priyanka Dash, Chandan Das, Biswakanth Kar, Goutam Ghosh, Goutam Rath

Background: The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.

Aim: This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.

Results and discussion: Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.

Conclusion: Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.

背景:COVID-19 的大流行促使人们大力开发抗击 SARS-CoV-2 的疗法。目前已批准使用有限的一系列小分子抗病毒药物,特别是单克隆抗体和干扰素疗法来治疗 COVID-19。这些疗法通常需要在症状出现后十天内用药。据报道,由于非结构蛋白基因突变,特别是针对 Omicron 亚变体的基因突变,这些药物的疗效有所下降。目的:本综述旨在了解 nMAbs 在预防和治疗 SARS-CoV-2 的 Omicron 变体方面的治疗效果和最新进展:中和单克隆抗体(nMAbs)为严重感染者,尤其是那些无法接种疫苗的高危人群提供了治疗途径。中和单克隆抗体具有特异性表位亲和力,不会产生严重不良反应。不同单克隆抗体和变体组合的中和降低程度差异很大。例如,索特罗维奇单抗对 Omicron BA.1 的中和效力保持不变,但对 BA.2、BA.4、BA.5 和 BA.2.12.1 的效力有所降低:据观察,Bebtelovimab对所有亚型的Omicron变异体均有疗效。随后,WKS13、mAb-39、19n01、F61-d2 鸡尾酒等也变得有效。本综述强调了 nMAbs 在 SARS-CoV-2 Omicron 治疗中的治疗意义以及 COVID-19 药物研发的进展。
{"title":"Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant.","authors":"Pijus Parua, Somnath Ghosh, Koushik Jana, Arnab Seth, Biplab Debnath, Saroj Kumar Rout, Manoj Kumar Sarangi, Rasmita Dash, Jitu Halder, Tushar Kanti Rajwar, Deepak Pradhan, Vineet Kumar Rai, Priyanka Dash, Chandan Das, Biswakanth Kar, Goutam Ghosh, Goutam Rath","doi":"10.2174/0113816128334441241108050528","DOIUrl":"10.2174/0113816128334441241108050528","url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.</p><p><strong>Aim: </strong>This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.</p><p><strong>Results and discussion: </strong>Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.</p><p><strong>Conclusion: </strong>Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review. 在聚合物和脂质纳米载体上共负载放射光敏剂,用于放射光动力治疗:综述。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-08 DOI: 10.2174/0113816128335001241020162217
Kave Moloudi, Heidi Abrahamse, Blassan P George

Polymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to codelivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio- photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in codrugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.

聚合物和脂质纳米载体是纳米医学和联合给药的最新技术,可将各种诊断和治疗方式(如癌症治疗中的放射治疗(RT)、光动力治疗(PDT)和化疗(CT))结合起来。在各种形状和纳米结构中,聚合物和脂质纳米载体具有同时向细胞输送两种药物的潜力。然而,疏水性和亲水性药物可以同时装载在这些纳米载体的层间和核心中。纳米载体的这一优势可用于联合治疗。放射增敏剂和光敏剂在癌症的放射光动力疗法(RT-PDT)中发挥着关键作用。将这些制剂联合投放到癌细胞中有利于癌症治疗,但仍是 RT-PDT 的一个挑战。不过,在这篇综述中,我们强调了 RT-PDT 所面临的挑战,以及聚合物和脂质纳米载体在作为放射光敏剂联合递送疏水性和亲水性制剂方面的作用。因此,对不同种类的聚(乳酸-共聚-乙醇酸)纳米粒子(NPs)进行了分类。然后,概述了共负载在聚合物和脂质纳米载体上的放射光敏剂在 RT-PDT 治疗癌症中的生物物理机制。最后,还介绍了聚合物和脂质纳米载体在联合给药中的应用。综上所述,本研究报告介绍了这一领域的最新进展,并强调了联合给药用于 RT-PDT 的利弊。
{"title":"Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review.","authors":"Kave Moloudi, Heidi Abrahamse, Blassan P George","doi":"10.2174/0113816128335001241020162217","DOIUrl":"https://doi.org/10.2174/0113816128335001241020162217","url":null,"abstract":"<p><p>Polymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to codelivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio- photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in codrugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome. 通过硅学对接、毒性、药代动力学和分子动力学方法筛选最佳植物成分,以防治多囊卵巢综合征。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-07 DOI: 10.2174/0113816128330398241015115043
Pavithra Lakshmi Narayanan, Chitra Vellapandian

Background: Polycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.

Objective: The present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of in silico techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.

Methods: Molecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.

Results: Constituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the in silico techniques showed that Sarsasapogenin from Asparagus racemosus exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable druglikeness profile and non-toxic effects across all screened parameters.

Conclusion: From the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.

背景:多囊卵巢综合征(PCOS)是一种因女性体内雄性激素分泌过多而导致的内分泌失调症。治疗多囊卵巢综合症的草药疗法因其可避免不良反应且长期服用非常安全而如雨后春笋般出现:本研究精选了 34 种对子宫有生物作用的草药,并使用不同的软件对其主要化学成分进行了一系列硅学技术研究。研究选择了对激素功能有主要贡献的蛋白质,如人细胞色素 P450 CYP17A1 (3RUK)、孕酮 (1E3K) 和雌激素受体 (1X7R):使用 AutoDock 1.5.7 进行了分子对接研究。药代动力学特性使用 SwissADME 在线工具进行预测,毒性参数则使用 OSIRIS toxicity explorer 和 pkCSM 进行评估。分子动力学模拟和自由能计算使用 Schrödinger 套件进行:结果:具有基本类固醇核的成分显示出较高的结合能值。通过对所有硅学技术的分析表明,天门冬皂苷与所选特定蛋白质的结合能分别为-10.88 kcal/mol、-10.51 kcal/mol和-9.79 kcal/mol。在分子动力学模拟中,菝葜皂苷元显示出理想的稳定性,其 RMSD 波动低于 3 Å,RMSF 略高于载脂蛋白的相应峰值。此外,在所有筛选参数中,它都显示出良好的亲药性和无毒作用:结论:从所选成分列表中发现,菝葜皂苷元是一种理想的成分,对其针对多囊卵巢综合征的进一步研究有望取得可喜成果。
{"title":"Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome.","authors":"Pavithra Lakshmi Narayanan, Chitra Vellapandian","doi":"10.2174/0113816128330398241015115043","DOIUrl":"https://doi.org/10.2174/0113816128330398241015115043","url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.</p><p><strong>Objective: </strong>The present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of in silico techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.</p><p><strong>Methods: </strong>Molecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.</p><p><strong>Results: </strong>Constituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the in silico techniques showed that Sarsasapogenin from Asparagus racemosus exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable druglikeness profile and non-toxic effects across all screened parameters.</p><p><strong>Conclusion: </strong>From the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. 纳米药物与心脏并发症之间的交叉对话:综合观点。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-05 DOI: 10.2174/0113816128347223241021111914
Shagufta Jawaid, Yogesh Joshi, Nauroz Neelofar, Khuzamah Khursheed, Samya Shams, Mansi Chaudhary, Mitali Arora, Karan Mahajan, Firoz Anwar

Background: Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs.

Objective: This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics.

Observations: In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities.

Conclusion: The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).

背景:心血管疾病(CVDs)是全球发病率和死亡率的主要原因,因此需要创新的治疗和诊断方法。纳米科学已成为解决心血管疾病复杂问题的一个前景广阔的前沿领域:本研究旨在探索心血管疾病与纳米医学(NMs)之间的相互作用,重点是治疗和诊断方面的应用:在治疗领域,纳米级给药系统具有独特的优势,如提高药物的生物利用度、靶向给药和控释。包括脂质体、纳米颗粒和载体在内的纳米材料平台可将药物精确地靶向作用于受影响的心血管组织,并将不良反应降到最低,达到最佳疗效。此外,纳米材料(NM)还能将治疗剂和靶配体等多功能成分整合到单一系统中,实现心血管疾病的综合管理。纳米材料的诊断前沿为心血管疾病的早期检测和监测提供了创新解决方案。纳米粒子和纳米传感器可实现对心脏生物标志物的高灵敏度和特异性检测,为了解疾病状态、病情发展和治疗效果等提供宝贵的信息。此外,基于纳米技术的成像模式可提供高分辨率成像,有助于心血管结构和异常的血管化。基于纳米技术的成像模式可提供高分辨率成像,有助于心血管结构和异常的可视化:结论:心血管疾病和纳米技术之间的交叉联系具有巨大的潜力,可提供有针对性的高效治疗干预,并与人工智能(AI)相结合,进行敏感的早期检测,从而改善患者的健康状况,从而彻底改变心血管医疗保健。
{"title":"A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View.","authors":"Shagufta Jawaid, Yogesh Joshi, Nauroz Neelofar, Khuzamah Khursheed, Samya Shams, Mansi Chaudhary, Mitali Arora, Karan Mahajan, Firoz Anwar","doi":"10.2174/0113816128347223241021111914","DOIUrl":"10.2174/0113816128347223241021111914","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs.</p><p><strong>Objective: </strong>This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics.</p><p><strong>Observations: </strong>In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities.</p><p><strong>Conclusion: </strong>The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Synthesis, and Molecular Docking of Quinazolines Bearing Caffeoyl Moiety for Targeting of PGK1/PKM2/STAT3 Signaling Pathway in the Human Breast Cancer. 针对人类乳腺癌 PGK1/PKM2/STAT3 信号通路的含咖啡酰基喹唑啉类化合物的设计、合成和分子对接。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-05 DOI: 10.2174/0113816128337881241016064641
Rita M Borik, Mohammed A Hussein

Background: PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies. The present study aims to synthesize quinazolines containing caffeoyl moiety for developing innovative anticancer agents against the human breast cancer cell line (MCF-7).

Methods: A new quinazoline 2 was synthesized by reacting caffeic acid with 5-amino-phenylpyrazole carboxylate 1 in the presence of PCl3. Compound 2 reacted with NH2NH2.H2O to produce compound 3 through cyclo-condensation. Apoptosis and necrosis as well as inhibition activity compounds 2 and 3 against PGK1, and PKM2 were evaluated. The effect of compounds 2 and 3 on the levels of GSH, GR, SOD, GPx, CAT, MDA, Bax, Bcl-2, caspase-3, P53 and VEGF levels as well as PGK1, PKM2 and STAT3 gene expression were estimated in MCF-7 tumor cells.

Results: The viability of MCF-7 cells was reduced to 22.42% and 45.86% after incubation with compounds 2 and 3 for 48 hours, respectively. The IC50 values for compounds 2 and 3 are 62.05 μg/mL and 16.73 μg/mL. Furthermore, compound 3 exhibited more significant apoptosis and necrosis than compound 2. IC50 values of compound 2 against PGK1, and PKM2 at interval concentration equals 1.04, and 0.32 μM/mL, respectively, after 210 minutes of incubation. Moreover, compound 3 were revealed strong inhibition of PGK1, and PKM2 with IC50 values equals 0.55 and 0.21 μg/mL, respectively after 210 minutes of incubation. Our results proved that the incubation of compounds 2 and 3 with MCF-7 cells increased the levels of apoptotic proteins, elevated MDA, Bax, caspase-3 and P53 levels, depleted GSH, GR, SOD, GPx, CAT, Bcl-2 levels and downregulated the levels of STAT3, PGK1, and PKM2 gene expression significantly. Our In-silico results proved that compound 2 showed a stronger estimated binding affinity with a ΔG of -7.2, -7.5, and - 7.9 kcal/mol., respectively towards PGK1, PKM2 and STAT3 proteins. Also, compound 3 exhibits a strong binding affinity with ΔG of -7.9, -8.5, and - 8.7 kcal/mol., towards PGK1, PKM2 and STAT3 proteins.

Conclusion: The results show that compounds 2 and 3 induce apoptotic activity by blocking the PGK1- PKM2-STAT3 signaling pathway. The present investigation opens exciting possibilities for developing innovative new anticancer quinazolines bearing caffeoyl moiety.

背景:PGK1和PKM2是糖酵解酶,它们在癌细胞中的表达会上调。STAT3 是一种转录因子,与乳腺癌的进展和化疗抗药性有关。全世界的研究人员都在继续探索如何通过靶向基因获得更有效的抗乳腺癌疗法。本研究旨在合成含有咖啡酰基的喹唑啉类化合物,以开发针对人类乳腺癌细胞系(MCF-7)的创新抗癌剂:方法:在 PCl3 存在下,咖啡酸与 5-氨基苯基吡唑羧酸盐 1 反应合成了一种新的喹唑啉 2。化合物 2 与 NH2NH2.H2O 反应,通过环缩合生成化合物 3。对化合物 2 和 3 的凋亡和坏死活性以及对 PGK1 和 PKM2 的抑制活性进行了评估。评估了化合物 2 和 3 对 MCF-7 肿瘤细胞中 GSH、GR、SOD、GPx、CAT、MDA、Bax、Bcl-2、caspase-3、P53 和 VEGF 水平以及 PGK1、PKM2 和 STAT3 基因表达的影响:用化合物 2 和 3 培养 MCF-7 细胞 48 小时后,其存活率分别降至 22.42% 和 45.86%。化合物 2 和 3 的 IC50 值分别为 62.05 μg/mL 和 16.73 μg/mL。此外,化合物 3 比化合物 2 表现出更明显的细胞凋亡和坏死。在孵育 210 分钟后,化合物 2 对 PGK1 和 PKM2 的 IC50 值分别为 1.04 和 0.32 μM/mL。此外,化合物 3 对 PGK1 和 PKM2 有很强的抑制作用,孵育 210 分钟后的 IC50 值分别为 0.55 和 0.21 μg/mL。我们的结果证明,化合物 2 和 3 与 MCF-7 细胞孵育后,细胞凋亡蛋白水平升高,MDA、Bax、caspase-3 和 P53 水平升高,GSH、GR、SOD、GPx、CAT、Bcl-2 水平降低,STAT3、PGK1 和 PKM2 基因表达水平显著下调。我们的 In-silico 结果证明,化合物 2 对 PGK1、PKM2 和 STAT3 蛋白具有更强的估计结合亲和力,ΔG 分别为 -7.2、-7.5 和 -7.9kcal/mol。化合物 3 与 PGK1、PKM2 和 STAT3 蛋白的结合亲和力也很强,ΔG 分别为 -7.9、-8.5 和 -8.7kcal/mol:结果表明,化合物 2 和 3 通过阻断 PGK1- PKM2-STAT3 信号通路诱导细胞凋亡。本研究为开发含有咖啡酰基的创新型抗癌喹唑啉类化合物提供了令人兴奋的可能性。
{"title":"Design, Synthesis, and Molecular Docking of Quinazolines Bearing Caffeoyl Moiety for Targeting of PGK1/PKM2/STAT3 Signaling Pathway in the Human Breast Cancer.","authors":"Rita M Borik, Mohammed A Hussein","doi":"10.2174/0113816128337881241016064641","DOIUrl":"10.2174/0113816128337881241016064641","url":null,"abstract":"<p><strong>Background: </strong>PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies. The present study aims to synthesize quinazolines containing caffeoyl moiety for developing innovative anticancer agents against the human breast cancer cell line (MCF-7).</p><p><strong>Methods: </strong>A new quinazoline 2 was synthesized by reacting caffeic acid with 5-amino-phenylpyrazole carboxylate 1 in the presence of PCl3. Compound 2 reacted with NH2NH2.H2O to produce compound 3 through cyclo-condensation. Apoptosis and necrosis as well as inhibition activity compounds 2 and 3 against PGK1, and PKM2 were evaluated. The effect of compounds 2 and 3 on the levels of GSH, GR, SOD, GPx, CAT, MDA, Bax, Bcl-2, caspase-3, P53 and VEGF levels as well as PGK1, PKM2 and STAT3 gene expression were estimated in MCF-7 tumor cells.</p><p><strong>Results: </strong>The viability of MCF-7 cells was reduced to 22.42% and 45.86% after incubation with compounds 2 and 3 for 48 hours, respectively. The IC50 values for compounds 2 and 3 are 62.05 μg/mL and 16.73 μg/mL. Furthermore, compound 3 exhibited more significant apoptosis and necrosis than compound 2. IC50 values of compound 2 against PGK1, and PKM2 at interval concentration equals 1.04, and 0.32 μM/mL, respectively, after 210 minutes of incubation. Moreover, compound 3 were revealed strong inhibition of PGK1, and PKM2 with IC50 values equals 0.55 and 0.21 μg/mL, respectively after 210 minutes of incubation. Our results proved that the incubation of compounds 2 and 3 with MCF-7 cells increased the levels of apoptotic proteins, elevated MDA, Bax, caspase-3 and P53 levels, depleted GSH, GR, SOD, GPx, CAT, Bcl-2 levels and downregulated the levels of STAT3, PGK1, and PKM2 gene expression significantly. Our In-silico results proved that compound 2 showed a stronger estimated binding affinity with a ΔG of -7.2, -7.5, and - 7.9 kcal/mol., respectively towards PGK1, PKM2 and STAT3 proteins. Also, compound 3 exhibits a strong binding affinity with ΔG of -7.9, -8.5, and - 8.7 kcal/mol., towards PGK1, PKM2 and STAT3 proteins.</p><p><strong>Conclusion: </strong>The results show that compounds 2 and 3 induce apoptotic activity by blocking the PGK1- PKM2-STAT3 signaling pathway. The present investigation opens exciting possibilities for developing innovative new anticancer quinazolines bearing caffeoyl moiety.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic Studies on the Antidiabetic Properties of Gallotannins. 关于五倍子单宁抗糖尿病特性的机理研究
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-04 DOI: 10.2174/0113816128338114241021110221
Xueqing Li, Wei Wu, Yuting Liu, Jiale Zhao, Yibei Gui, Hailin Wang, Lijun Wang, Yiyang Luo, Gang Zhou, Yumin He, Chengfu Yuan

The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.

2 型糖尿病(T2DM)发病率的不断攀升已成为全球公共卫生的一个难题。这种疾病与胰岛素抵抗和血糖浓度升高有关。尽管现代医学突飞猛进,采用了一系列药物来有效控制血糖,但某些治疗方法仍表现出明显的不良反应。最近的研究阐明了五倍子单宁在减轻炎症和肥胖方面的关键作用,从而有可能降低与肥胖相关的 T2DM 的发病率。五倍子单宁以其糖苷核心和五倍子酰基为定义,普遍存在于植物中,具有多种生物功能,是异质单宁类中水溶性多酚类化合物的重要组成部分。五倍子单宁的结构属性决定了它们具有多种生物活性。由于含有大量羟基(-OH)和复杂的大分子结构,五倍子单宁具有一系列生理特性,包括抗氧化、抗炎、抗糖尿病、蛋白质沉淀和抗菌作用。广泛的研究表明,五倍子单宁能特异性地阻碍α-淀粉酶和胰脂肪酶,增强胰岛素敏感性,调节短链脂肪酸的产生,减轻氧化应激,表现出抗炎特性,并影响肠道微生物群,这些共同促成了五倍子单宁的抗糖尿病功效。本综述旨在整合和仔细研究有关五倍子单宁的现有文献,为其在糖尿病管理中的潜在应用提供重要见解。
{"title":"Mechanistic Studies on the Antidiabetic Properties of Gallotannins.","authors":"Xueqing Li, Wei Wu, Yuting Liu, Jiale Zhao, Yibei Gui, Hailin Wang, Lijun Wang, Yiyang Luo, Gang Zhou, Yumin He, Chengfu Yuan","doi":"10.2174/0113816128338114241021110221","DOIUrl":"https://doi.org/10.2174/0113816128338114241021110221","url":null,"abstract":"<p><p>The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network Pharmacological Analysis of Hydroxychloroquine Intervention in the Treatment of Iga Nephropathy. 羟氯喹干预治疗 Iga 肾病的网络药理学分析
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.2174/0113816128347345241028063515
Mengxiao Zou, Gang Xu, Shuwang Ge, Kanglin Guo, Qian Duo, Yichun Cheng

Background: IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network pharmacology was used to investigate the mechanism.

Methods: PubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cytoscape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.

Results: 167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. At the same time, the molecular docking results showed that the core targets all combined with hydroxychloroquine closely.

Conclusion: This study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment.

背景:IgA 肾病(IgAN)是全球发病率最高的原发性肾小球肾炎,极易发展为终末期肾病(ESRD)。羟氯喹已被证实能减少 IgAN 患者的蛋白尿,但其确切机制仍不清楚。因此,我们采用了网络药理学来研究其机制:方法:利用 PubChem 和 SwissADME 数据库获取羟氯喹的结构。然后利用 SwissTargetPrediction、PharmMapper、DrugBank、TargetNet 和 BATMAN-TCM 数据库获取靶点。然后从包括 GeneCards、PHARMGKB、DrugBank、OMIM 和 DisGeNET 在内的数据库中收集与 IgAN 相关的靶基因。共同靶标由 UniProt.对基因本体(GO)和京都基因与基因组百科全书(KEGG)进行了富集分析,以确定主要的分子机制和通路。此外,还使用 STRING 工具构建了蛋白质-蛋白质相互作用(PPI)网络,并通过 Cytoscape 获得了核心靶标。最后,对核心靶标与羟氯喹进行了分子对接:结果:通过重叠获得了 167 个共同靶基因。核心靶点包括 TNF、ALB、IL1B、JUN、FOS、SRC 和 MMP9。GO和KEGG结果显示,这些靶标与炎症细胞因子和趋化因子的产生有关,并参与了类收费受体(TLR)信号通路。同时,分子对接结果显示,核心靶点均与羟氯喹紧密结合:本研究证明,羟氯喹可通过TLR信号通路治疗IgAN,而TNF、TLR、IL1B和JUN的抑制可能是治疗的关键。
{"title":"Network Pharmacological Analysis of Hydroxychloroquine Intervention in the Treatment of Iga Nephropathy.","authors":"Mengxiao Zou, Gang Xu, Shuwang Ge, Kanglin Guo, Qian Duo, Yichun Cheng","doi":"10.2174/0113816128347345241028063515","DOIUrl":"https://doi.org/10.2174/0113816128347345241028063515","url":null,"abstract":"<p><strong>Background: </strong>IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network pharmacology was used to investigate the mechanism.</p><p><strong>Methods: </strong>PubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cytoscape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.</p><p><strong>Results: </strong>167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. At the same time, the molecular docking results showed that the core targets all combined with hydroxychloroquine closely.</p><p><strong>Conclusion: </strong>This study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease. 克服阿尔茨海默病治疗障碍的前沿策略。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 DOI: 10.2174/0113816128344571241018154506
Aparna Inamdar, Bannimath Gurupadayya, Prashant Halagali, Nandakumar S, Rashmi Pathak, Himalaya Singh, Himanshu Sharma

Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.

阿尔茨海默病(AD)是最难治疗的神经退行性疾病之一,因为它会导致患者认知能力持续退化和记忆力丧失。尽管进行了广泛的研究,但几乎没有找到可行的治疗方法;这主要是由于该疾病复杂的生物学特性、有限的药物疗效和生物BB等几个障碍造成的。本讲座将讨论解决这些治疗障碍的当前策略,以提高注意力缺失症的治疗效果。包括脂质体、外泌体和纳米颗粒在内的创新给药方法或许能通过血脑屏障,让药物进入特定脑区。这些创新的药物分配策略可通过改善吸收来减少全身副作用。此外,针对 tau 蛋白缠结、淀粉样蛋白-β 斑块和神经炎症的疾病改变疗法的开发为影响疾病进程而非仅仅治疗症状提供了机会。此外,基因治疗和CRISPR-Cas9技术已成为解决与AD相关的潜在基因缺陷的潜在突破性方法。此外,患者护理的新方法可能包括利用现有的具有神经保护特性的药物,如治疗糖尿病和心血管疾病的药物。此外,生物标志物研究和个性化医疗使个体化治疗方法成为可能,确保患者根据其独特的基因和分子特征获得最佳治疗。
{"title":"Cutting-Edge Strategies for Overcoming Therapeutic Barriers in Alzheimer's Disease.","authors":"Aparna Inamdar, Bannimath Gurupadayya, Prashant Halagali, Nandakumar S, Rashmi Pathak, Himalaya Singh, Himanshu Sharma","doi":"10.2174/0113816128344571241018154506","DOIUrl":"https://doi.org/10.2174/0113816128344571241018154506","url":null,"abstract":"<p><p>Alzheimer's disease (AD) remains one of the hardest neurodegenerative diseases to treat due to its enduring cognitive deterioration and memory loss. Despite extensive research, few viable treatment approaches have been found; these are mostly due to several barriers, such as the disease's complex biology, limited pharmaceutical efficacy, and the BBB. This presentation discusses current strategies for addressing these therapeutic barriers to enhance AD treatment. Innovative drug delivery methods including liposomes, exosomes, and nanoparticles may be able to pass the blood-brain barrier and allow medicine to enter specific brain regions. These innovative strategies of medicine distribution reduce systemic side effects by improving absorption. Moreover, the development of disease-modifying treatments that target tau protein tangles, amyloid-beta plaques, and neuroinflammation offers the chance to influence the course of the illness rather than only treat its symptoms. Furthermore, gene therapy and CRISPR-Cas9 technologies have surfaced as potentially groundbreaking methods for addressing the underlying genetic defects associated with AD. Furthermore, novel approaches to patient care may involve the utilization of existing medications having neuroprotective properties, such as those for diabetes and cardiovascular conditions. Furthermore, biomarker research and personalized medicine have made individualized therapy approaches possible, ensuring that patients receive the best care possible based on their unique genetic and molecular profiles.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current pharmaceutical design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1