PARP7 Inhibitors and AHR Agonists Act Synergistically Across a Wide-Range of Cancer Models.

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-09-24 DOI:10.1158/1535-7163.MCT-24-0211
Huadong Chen, Xuxu Gou, Ying Mao, Patrick C O'Leary, Morgan E Diolaiti, Alan Ashworth
{"title":"PARP7 Inhibitors and AHR Agonists Act Synergistically Across a Wide-Range of Cancer Models.","authors":"Huadong Chen, Xuxu Gou, Ying Mao, Patrick C O'Leary, Morgan E Diolaiti, Alan Ashworth","doi":"10.1158/1535-7163.MCT-24-0211","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule inhibitors of the mono (ADP) ribosyl transferase PARP7 are being evaluated as a monotherapy for tumors overexpressing PARP7 and in combination with immune checkpoint blockade. We previously showed that sensitivity to the PARP7 inhibitor (PARP7i) RBN-2397 could be enhanced by co-treatment with agonists of the Aryl Hydrocarbon Receptor (AHRa) in cell lines that show strong intrinsic sensitivity to RBN-2397. Here we demonstrate that a range of tumor cell lines that are relatively insensitive to PARP7i or AHRa as individual agents are unexpectedly profoundly sensitive to the combination. Our data show that this synergistic response is dependent on AHR/ARNT and is associated with increased levels of nuclear AHR and increased transcription of AHR target genes. In some hormone receptor-positive cell lines, we find that combination treatment is associated with proteasomal turnover of the steroid hormone receptors, androgen receptor and estrogen receptor. Both wildtype and hormone-resistant mutant forms of these receptors are degraded upon treatment with AHRa and PARP7i in breast and prostate cancer models. These results suggest that combining PARP7i with AHRa may extend the utility of these drugs to a wider range of tumors, including those that are refractory to hormone therapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0211","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Small molecule inhibitors of the mono (ADP) ribosyl transferase PARP7 are being evaluated as a monotherapy for tumors overexpressing PARP7 and in combination with immune checkpoint blockade. We previously showed that sensitivity to the PARP7 inhibitor (PARP7i) RBN-2397 could be enhanced by co-treatment with agonists of the Aryl Hydrocarbon Receptor (AHRa) in cell lines that show strong intrinsic sensitivity to RBN-2397. Here we demonstrate that a range of tumor cell lines that are relatively insensitive to PARP7i or AHRa as individual agents are unexpectedly profoundly sensitive to the combination. Our data show that this synergistic response is dependent on AHR/ARNT and is associated with increased levels of nuclear AHR and increased transcription of AHR target genes. In some hormone receptor-positive cell lines, we find that combination treatment is associated with proteasomal turnover of the steroid hormone receptors, androgen receptor and estrogen receptor. Both wildtype and hormone-resistant mutant forms of these receptors are degraded upon treatment with AHRa and PARP7i in breast and prostate cancer models. These results suggest that combining PARP7i with AHRa may extend the utility of these drugs to a wider range of tumors, including those that are refractory to hormone therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PARP7 抑制剂和 AHR 激动剂在多种癌症模型中发挥协同作用
目前正在评估单(ADP)核糖转移酶PARP7的小分子抑制剂,将其作为治疗过表达PARP7肿瘤的单一疗法,或与免疫检查点阻断疗法联合使用。我们以前的研究表明,在对 RBN-2397 表现出强烈内在敏感性的细胞系中,通过与芳基烃受体(AHRa)激动剂联合处理,可以提高 PARP7 抑制剂(PARP7i)RBN-2397 的敏感性。在这里,我们证明了一系列对 PARP7i 或 AHRa 单药相对不敏感的肿瘤细胞系意外地对联合用药非常敏感。我们的数据显示,这种协同反应依赖于 AHR/ARNT,并与核 AHR 水平的增加和 AHR 靶基因转录的增加有关。在一些激素受体阳性细胞系中,我们发现联合治疗与类固醇激素受体、雄激素受体和雌激素受体的蛋白酶体转换有关。在乳腺癌和前列腺癌模型中,使用 AHRa 和 PARP7i 治疗后,这些受体的野生型和激素抗性突变型都会降解。这些结果表明,将 PARP7i 与 AHRa 结合使用可将这些药物的用途扩大到更广泛的肿瘤,包括那些对激素疗法难治的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
A small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth. Riluzole Enhancing anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer. Tumor integrin-targeted glucose oxidase enzyme promotes ROS-mediated cell death that combines with interferon alpha therapy for tumor control. Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate. Zelenirstat Inhibits N-Myristoyltransferases to Disrupt Src Family Kinase Signalling and Oxidative Phosphorylation Killing Acute Myeloid Leukemia Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1