Deep Nonnegative Matrix Factorization With Beta Divergences

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2024-10-11 DOI:10.1162/neco_a_01679
Valentin Leplat;Le T. K. Hien;Akwum Onwunta;Nicolas Gillis
{"title":"Deep Nonnegative Matrix Factorization With Beta Divergences","authors":"Valentin Leplat;Le T. K. Hien;Akwum Onwunta;Nicolas Gillis","doi":"10.1162/neco_a_01679","DOIUrl":null,"url":null,"abstract":"Deep nonnegative matrix factorization (deep NMF) has recently emerged as a valuable technique for extracting multiple layers of features across different scales. However, all existing deep NMF models and algorithms have primarily centered their evaluation on the least squares error, which may not be the most appropriate metric for assessing the quality of approximations on diverse data sets. For instance, when dealing with data types such as audio signals and documents, it is widely acknowledged that ß-divergences offer a more suitable alternative. In this article, we develop new models and algorithms for deep NMF using some ß-divergences, with a focus on the Kullback-Leibler divergence. Subsequently, we apply these techniques to the extraction of facial features, the identification of topics within document collections, and the identification of materials within hyperspectral images.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 11","pages":"2365-2402"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810333/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep nonnegative matrix factorization (deep NMF) has recently emerged as a valuable technique for extracting multiple layers of features across different scales. However, all existing deep NMF models and algorithms have primarily centered their evaluation on the least squares error, which may not be the most appropriate metric for assessing the quality of approximations on diverse data sets. For instance, when dealing with data types such as audio signals and documents, it is widely acknowledged that ß-divergences offer a more suitable alternative. In this article, we develop new models and algorithms for deep NMF using some ß-divergences, with a focus on the Kullback-Leibler divergence. Subsequently, we apply these techniques to the extraction of facial features, the identification of topics within document collections, and the identification of materials within hyperspectral images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝塔差分进行深度非负矩阵因式分解
深度非负矩阵因式分解(deep nonnegative matrix factorization,deep NMF)是最近出现的一种提取不同尺度多层特征的重要技术。然而,所有现有的深度非负矩阵因式分解模型和算法都主要以最小二乘误差为评估核心,而这可能并不是评估不同数据集近似质量的最合适指标。例如,在处理音频信号和文档等数据类型时,人们普遍认为ß-差分提供了更合适的选择。在本文中,我们利用一些ß-发散为深度 NMF 开发了新的模型和算法,重点是 Kullback-Leibler 发散。随后,我们将这些技术应用于面部特征的提取、文档集中主题的识别以及高光谱图像中材料的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Realizing Synthetic Active Inference Agents, Part II: Variational Message Updates Bounded Rational Decision Networks With Belief Propagation Computation With Sequences of Assemblies in a Model of the Brain Relating Human Error–Based Learning to Modern Deep RL Algorithms Selective Inference for Change Point Detection by Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1