{"title":"KLIF: An Optimized Spiking Neuron Unit for Tuning Surrogate Gradient Function.","authors":"Chunming Jiang, Yilei Zhang","doi":"10.1162/neco_a_01712","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs) have garnered significant attention owing to their adeptness in processing temporal information, low power consumption, and enhanced biological plausibility. Despite these advantages, the development of efficient and high-performing learning algorithms for SNNs remains a formidable challenge. Techniques such as artificial neural network (ANN)-to-SNN conversion can convert ANNs to SNNs with minimal performance loss, but they necessitate prolonged simulations to approximate rate coding accurately. Conversely, the direct training of SNNs using spike-based backpropagation (BP), such as surrogate gradient approximation, is more flexible and widely adopted. Nevertheless, our research revealed that the shape of the surrogate gradient function profoundly influences the training and inference accuracy of SNNs. Importantly, we identified that the shape of the surrogate gradient function significantly affects the final training accuracy. The shape of the surrogate gradient function is typically manually selected before training and remains static throughout the training process. In this article, we introduce a novel k-based leaky integrate-and-fire (KLIF) spiking neural model. KLIF, featuring a learnable parameter, enables the dynamic adjustment of the height and width of the effective surrogate gradient near threshold during training. Our proposed model undergoes evaluation on static CIFAR-10 and CIFAR-100 data sets, as well as neuromorphic CIFAR10-DVS and DVS128-Gesture data sets. Experimental results demonstrate that KLIF outperforms the leaky Integrate-and-Fire (LIF) model across multiple data sets and network architectures. The superior performance of KLIF positions it as a viable replacement for the essential role of LIF in SNNs across diverse tasks.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"2636-2650"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/neco_a_01712","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural networks (SNNs) have garnered significant attention owing to their adeptness in processing temporal information, low power consumption, and enhanced biological plausibility. Despite these advantages, the development of efficient and high-performing learning algorithms for SNNs remains a formidable challenge. Techniques such as artificial neural network (ANN)-to-SNN conversion can convert ANNs to SNNs with minimal performance loss, but they necessitate prolonged simulations to approximate rate coding accurately. Conversely, the direct training of SNNs using spike-based backpropagation (BP), such as surrogate gradient approximation, is more flexible and widely adopted. Nevertheless, our research revealed that the shape of the surrogate gradient function profoundly influences the training and inference accuracy of SNNs. Importantly, we identified that the shape of the surrogate gradient function significantly affects the final training accuracy. The shape of the surrogate gradient function is typically manually selected before training and remains static throughout the training process. In this article, we introduce a novel k-based leaky integrate-and-fire (KLIF) spiking neural model. KLIF, featuring a learnable parameter, enables the dynamic adjustment of the height and width of the effective surrogate gradient near threshold during training. Our proposed model undergoes evaluation on static CIFAR-10 and CIFAR-100 data sets, as well as neuromorphic CIFAR10-DVS and DVS128-Gesture data sets. Experimental results demonstrate that KLIF outperforms the leaky Integrate-and-Fire (LIF) model across multiple data sets and network architectures. The superior performance of KLIF positions it as a viable replacement for the essential role of LIF in SNNs across diverse tasks.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.