Pneumococcal transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of serotype 19F in Indonesia
{"title":"Pneumococcal transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of serotype 19F in Indonesia","authors":"Yustinus Maladan , Endah Retnaningrum , Budi Setiadi Daryono , Korrie Salsabila , Rosantia Sarassari , Miftahuddin Majid Khoeri , Ratna Fathma Sari , Sarah Azhari Balqis , Ghina Athyah Wahid , Dodi Safari","doi":"10.1016/j.meegid.2024.105672","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic evolution of resistance due to mutations and transposon insertions is the primary cause of antimicrobial resistance in <em>Streptococcus pneumoniae</em>. Resistance to macrolide, tetracycline, and chloramphenicol is caused by the insertion of specific genes that carried by transposon (Tn). This study aims to analyze transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of <em>S. pneumoniae</em> serotype 19F in Indonesia. <em>S. pneumoniae</em> serotype 19F isolates were collected from nasopharyngeal swab specimens from different regions in Indonesia. Genomic DNA was extracted from sixteen isolates and whole genome sequencing was performed on Illumina platform. Raw sequence data were analyzed using de novo assembly by ASA<sup>3</sup>P and Microscope server. The presence of transposons was identified with detection of <em>int</em> and <em>xis</em> genes and visualized by pyGenomeViz. The genome size of <em>S. pneumoniae</em> ranges from 2,040,117 bp to 2,437,939 bp, with a GC content of around 39 %. ST1464 (4/16) and ST271 (3/16) were found as the predominant sequence type among isolates. Tn2010 was the most common transposon among <em>S. pneumoniae</em> serotype 19F isolates (7/16) followed by Tn2009 (4/16), and Tn5253 (3/16). We identified two deletion sites within the <em>tetM</em> gene (2 bp and 58 bp) that confer tetracycline susceptibility from one isolate. This study suggests that genomic analysis can be employed for the detection and surveillance of antimicrobial resistance genes among <em>S. pneumoniae</em> strains isolated from various regions in Indonesia.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"125 ","pages":"Article 105672"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567134824001230/pdfft?md5=4a0e1d5404153d8316fb369293de5676&pid=1-s2.0-S1567134824001230-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824001230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic evolution of resistance due to mutations and transposon insertions is the primary cause of antimicrobial resistance in Streptococcus pneumoniae. Resistance to macrolide, tetracycline, and chloramphenicol is caused by the insertion of specific genes that carried by transposon (Tn). This study aims to analyze transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of S. pneumoniae serotype 19F in Indonesia. S. pneumoniae serotype 19F isolates were collected from nasopharyngeal swab specimens from different regions in Indonesia. Genomic DNA was extracted from sixteen isolates and whole genome sequencing was performed on Illumina platform. Raw sequence data were analyzed using de novo assembly by ASA3P and Microscope server. The presence of transposons was identified with detection of int and xis genes and visualized by pyGenomeViz. The genome size of S. pneumoniae ranges from 2,040,117 bp to 2,437,939 bp, with a GC content of around 39 %. ST1464 (4/16) and ST271 (3/16) were found as the predominant sequence type among isolates. Tn2010 was the most common transposon among S. pneumoniae serotype 19F isolates (7/16) followed by Tn2009 (4/16), and Tn5253 (3/16). We identified two deletion sites within the tetM gene (2 bp and 58 bp) that confer tetracycline susceptibility from one isolate. This study suggests that genomic analysis can be employed for the detection and surveillance of antimicrobial resistance genes among S. pneumoniae strains isolated from various regions in Indonesia.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .