Phylodynamics and phylogeography of watermelon mosaic virus: Multiple local invasion routes in southern France and recombination-driven limits to global analysis.
{"title":"Phylodynamics and phylogeography of watermelon mosaic virus: Multiple local invasion routes in southern France and recombination-driven limits to global analysis.","authors":"Patrick Hoscheit, Cécile Desbiez","doi":"10.1016/j.meegid.2025.105732","DOIUrl":null,"url":null,"abstract":"<p><p>Watermelon mosaic virus (WMV) is a major plant pathogen, infecting over 170 plant species, including cucurbits and legumes. Though mostly propagated locally by aphids in a non-persistent manner, long-range dispersal can occur through human-induced plant or vector movements. Understanding patterns of local and global spread of WMV is crucial to help formulate adequate control strategies. We used phylodynamic methods based on partial and whole-genome sequences collected in France between 2000 and 2017 to reconstruct the introduction of new lineages in the past 30 years and their subsequent diffusion in the country. We identified at least 11 different introduction events, hailing from different parts of the global diversity of WMV, highlighting the critical role international exchanges play in the spread of plant pathogens. For three of these lineages, we estimated the time and location of their introduction in the mid-1990s in the south of France and the speed at which they spread in this specific landscape. We also showed that the highly recombinogenic nature of WMV, as with most potyviruses, makes the use of whole genomes necessary to classify these viruses on a global scale and must be taken into consideration to reconstruct viral evolutionary history. Our results demonstrate how genomic sequencing of plant viruses can help reconstruct specific viral outbreaks and understand global circulation patterns of plant pathogens.</p>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":" ","pages":"105732"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meegid.2025.105732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Watermelon mosaic virus (WMV) is a major plant pathogen, infecting over 170 plant species, including cucurbits and legumes. Though mostly propagated locally by aphids in a non-persistent manner, long-range dispersal can occur through human-induced plant or vector movements. Understanding patterns of local and global spread of WMV is crucial to help formulate adequate control strategies. We used phylodynamic methods based on partial and whole-genome sequences collected in France between 2000 and 2017 to reconstruct the introduction of new lineages in the past 30 years and their subsequent diffusion in the country. We identified at least 11 different introduction events, hailing from different parts of the global diversity of WMV, highlighting the critical role international exchanges play in the spread of plant pathogens. For three of these lineages, we estimated the time and location of their introduction in the mid-1990s in the south of France and the speed at which they spread in this specific landscape. We also showed that the highly recombinogenic nature of WMV, as with most potyviruses, makes the use of whole genomes necessary to classify these viruses on a global scale and must be taken into consideration to reconstruct viral evolutionary history. Our results demonstrate how genomic sequencing of plant viruses can help reconstruct specific viral outbreaks and understand global circulation patterns of plant pathogens.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .