Detailed delineation of the fetal brain in diffusion MRI via multi-task learning.

ArXiv Pub Date : 2024-09-12
Davood Karimi, Camilo Calixto, Haykel Snoussi, Maria Camila Cortes-Albornoz, Clemente Velasco-Annis, Caitlin Rollins, Camilo Jaimes, Ali Gholipour, Simon K Warfield
{"title":"Detailed delineation of the fetal brain in diffusion MRI via multi-task learning.","authors":"Davood Karimi, Camilo Calixto, Haykel Snoussi, Maria Camila Cortes-Albornoz, Clemente Velasco-Annis, Caitlin Rollins, Camilo Jaimes, Ali Gholipour, Simon K Warfield","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion-weighted MRI is increasingly used to study the normal and abnormal development of fetal brain inutero. Recent studies have shown that dMRI can offer invaluable insights into the neurodevelopmental processes in the fetal stage. However, because of the low data quality and rapid brain development, reliable analysis of fetal dMRI data requires dedicated computational methods that are currently unavailable. The lack of automated methods for fast, accurate, and reproducible data analysis has seriously limited our ability to tap the potential of fetal brain dMRI for medical and scientific applications. In this work, we developed and validated a unified computational framework to (1) segment the brain tissue into white matter, cortical/subcortical gray matter, and cerebrospinal fluid, (2) segment 31 distinct white matter tracts, and (3) parcellate the brain's cortex and delineate the deep gray nuclei and white matter structures into 96 anatomically meaningful regions. We utilized a set of manual, semi-automatic, and automatic approaches to annotate 97 fetal brains. Using these labels, we developed and validated a multi-task deep learning method to perform the three computations. Our evaluations show that the new method can accurately carry out all three tasks, achieving a mean Dice similarity coefficient of 0.865 on tissue segmentation, 0.825 on white matter tract segmentation, and 0.819 on parcellation. The proposed method can greatly advance the field of fetal neuroimaging as it can lead to substantial improvements in fetal brain tractography, tract-specific analysis, and structural connectivity assessment.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion-weighted MRI is increasingly used to study the normal and abnormal development of fetal brain inutero. Recent studies have shown that dMRI can offer invaluable insights into the neurodevelopmental processes in the fetal stage. However, because of the low data quality and rapid brain development, reliable analysis of fetal dMRI data requires dedicated computational methods that are currently unavailable. The lack of automated methods for fast, accurate, and reproducible data analysis has seriously limited our ability to tap the potential of fetal brain dMRI for medical and scientific applications. In this work, we developed and validated a unified computational framework to (1) segment the brain tissue into white matter, cortical/subcortical gray matter, and cerebrospinal fluid, (2) segment 31 distinct white matter tracts, and (3) parcellate the brain's cortex and delineate the deep gray nuclei and white matter structures into 96 anatomically meaningful regions. We utilized a set of manual, semi-automatic, and automatic approaches to annotate 97 fetal brains. Using these labels, we developed and validated a multi-task deep learning method to perform the three computations. Our evaluations show that the new method can accurately carry out all three tasks, achieving a mean Dice similarity coefficient of 0.865 on tissue segmentation, 0.825 on white matter tract segmentation, and 0.819 on parcellation. The proposed method can greatly advance the field of fetal neuroimaging as it can lead to substantial improvements in fetal brain tractography, tract-specific analysis, and structural connectivity assessment.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多任务学习在弥散核磁共振成像中详细描述胎儿大脑
弥散加权磁共振成像(DMRI)越来越多地被用于研究胎儿在胎儿期大脑的正常和异常发育。最近的研究表明,dMRI 能为了解胎儿期的神经发育过程提供宝贵的信息。然而,由于数据质量低且大脑发育迅速,对胎儿 dMRI 数据进行可靠分析需要专门的计算方法,而这些方法目前尚不可用。缺乏快速、准确、可重复的数据分析自动化方法严重限制了我们挖掘胎儿大脑 dMRI 在医学和科学应用方面的潜力。在这项工作中,我们开发并验证了一个统一的计算框架,用于:(1)将脑组织分割为白质、皮层/皮层下灰质和脑脊液;(2)分割 31 个不同的白质束;(3)将大脑皮层划分为不同的区域,并将深灰核和白质结构划分为 96 个有解剖学意义的区域。我们采用了一套手动、半自动和自动方法来注释 97 胎儿大脑。利用这些标签,我们开发并验证了一种多任务深度学习方法来执行这三种计算。我们的评估结果表明,新方法可以准确地完成所有三项任务,组织分割的平均 Dice 相似性系数达到 0.865,白质束分割的平均 Dice 相似性系数达到 0.825,解析的平均 Dice 相似性系数达到 0.819。所提出的方法能极大地推动胎儿神经成像领域的发展,因为它能在胎儿大脑束成像、束特异性分析和结构连接性评估方面带来实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Categorization of 33 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. A Geometric Tension Dynamics Model of Epithelial Convergent Extension. Learning Molecular Representation in a Cell. Ankle Exoskeletons May Hinder Standing Balance in Simple Models of Older and Younger Adults. Nonparametric causal inference for optogenetics: sequential excursion effects for dynamic regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1