{"title":"Noninvasive Detection of the Skin Structure and Inversed Retrieval of Chromophore Information Based on Diffuse Reflectance Spectroscopy.","authors":"Jinyao Wang, Dong Li, Bin Chen","doi":"10.1002/jbio.202400118","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of skin's structure lays the foundation for personalized laser surgery of vascular skin disease, which can be noninvasively achieved by diffuse reflectance spectroscopy (DRS). A two-step inverse Monte Carlo radiation method based on DRS under two source-detector separations was proposed to quantify the skin structure, including chromophore concentration (melanin f <sub>m</sub> and hemoglobin f <sub>b</sub>), epidermal thickness t <sub>epi</sub>, average vessel diameter D <sub>ves</sub>, depth d <sub>pws</sub> and thickness t <sub>pws</sub> of the vascular layer for diseased skin. The method fitted the simulated DRS to the measured DRS iteratively, differences between which were described by a specific objective function to amplify blood absorption at 500-600 nm, and D <sub>ves</sub>, d <sub>pws</sub>, and t <sub>pws</sub> were estimated based on f <sub>m</sub>, f <sub>b</sub>, and t <sub>pws</sub> fitted in the first step. The results showed that the two-step method dramatically improve the inversion accuracy with mean errors of f <sub>m</sub>, f <sub>b</sub>, t <sub>pws</sub>, and d <sub>pws</sub> less than 5%.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of skin's structure lays the foundation for personalized laser surgery of vascular skin disease, which can be noninvasively achieved by diffuse reflectance spectroscopy (DRS). A two-step inverse Monte Carlo radiation method based on DRS under two source-detector separations was proposed to quantify the skin structure, including chromophore concentration (melanin f m and hemoglobin f b), epidermal thickness t epi, average vessel diameter D ves, depth d pws and thickness t pws of the vascular layer for diseased skin. The method fitted the simulated DRS to the measured DRS iteratively, differences between which were described by a specific objective function to amplify blood absorption at 500-600 nm, and D ves, d pws, and t pws were estimated based on f m, f b, and t pws fitted in the first step. The results showed that the two-step method dramatically improve the inversion accuracy with mean errors of f m, f b, t pws, and d pws less than 5%.