Synergistic Integration of Physical Embedding and Machine Learning Enabling Precise and Reliable Force Field

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-09-12 DOI:10.1021/acs.jctc.4c0061810.1021/acs.jctc.4c00618
Lifeng Xu,  and , Jian Jiang*, 
{"title":"Synergistic Integration of Physical Embedding and Machine Learning Enabling Precise and Reliable Force Field","authors":"Lifeng Xu,&nbsp; and ,&nbsp;Jian Jiang*,&nbsp;","doi":"10.1021/acs.jctc.4c0061810.1021/acs.jctc.4c00618","DOIUrl":null,"url":null,"abstract":"<p >Machine-learning force fields have achieved significant strides in accurately reproducing the potential energy surface with quantum chemical accuracy. However, this approach still faces several challenges, e.g., extrapolating to uncharted chemical spaces, interpreting long-range electrostatics, and mapping complex macroscopic properties. To address these issues, we advocate for a synergistic integration of physical principles and machine learning techniques within the framework of a physically informed neural network (PINN). This approach involves incorporating physical knowledge into the parameters of the neural network, coupled with an efficient global optimizer, the Tabu-Adam algorithm, proposed in this work to augment optimization under strict physical constraint. We choose the AMOEBA+ force field as the physics-based model for embedding and then train and test it using the diethylene glycol dimethyl ether (DEGDME) data set as a case study. The results reveal a breakthrough in constructing a precise and noise-robust machine learning force field. Utilizing two training sets with hundreds of samples, our model exhibits remarkable generalization and density functional theory (DFT) accuracy in describing molecular interactions and enables a precise prediction of the macroscopic properties such as the diffusion coefficient with minimal cost. This work provides valuable insight into establishing a fundamental framework of the PINN force field.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learning force fields have achieved significant strides in accurately reproducing the potential energy surface with quantum chemical accuracy. However, this approach still faces several challenges, e.g., extrapolating to uncharted chemical spaces, interpreting long-range electrostatics, and mapping complex macroscopic properties. To address these issues, we advocate for a synergistic integration of physical principles and machine learning techniques within the framework of a physically informed neural network (PINN). This approach involves incorporating physical knowledge into the parameters of the neural network, coupled with an efficient global optimizer, the Tabu-Adam algorithm, proposed in this work to augment optimization under strict physical constraint. We choose the AMOEBA+ force field as the physics-based model for embedding and then train and test it using the diethylene glycol dimethyl ether (DEGDME) data set as a case study. The results reveal a breakthrough in constructing a precise and noise-robust machine learning force field. Utilizing two training sets with hundreds of samples, our model exhibits remarkable generalization and density functional theory (DFT) accuracy in describing molecular interactions and enables a precise prediction of the macroscopic properties such as the diffusion coefficient with minimal cost. This work provides valuable insight into establishing a fundamental framework of the PINN force field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理嵌入与机器学习的协同集成实现了精确可靠的力场
机器学习力场在精确再现量子化学势能面方面取得了长足进步。然而,这种方法仍然面临着一些挑战,例如,推断未知的化学空间、解释长程静电以及映射复杂的宏观特性。为了解决这些问题,我们主张在物理信息神经网络(PINN)的框架内,将物理原理和机器学习技术进行协同整合。这种方法包括将物理知识纳入神经网络参数,并与本研究中提出的高效全局优化器--塔布-亚当算法(Tabu-Adam algorithm)相结合,以增强严格物理约束下的优化。我们选择 AMOEBA+ 力场作为基于物理的嵌入模型,然后以二乙二醇二甲醚(DEGDME)数据集为案例对其进行训练和测试。研究结果表明,在构建精确且噪声低的机器学习力场方面取得了突破性进展。利用两个包含数百个样本的训练集,我们的模型在描述分子相互作用时表现出卓越的泛化能力和密度泛函理论(DFT)准确性,并能以最低成本精确预测扩散系数等宏观性质。这项工作为建立 PINN 力场的基本框架提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Electron-Spin Relaxation in Boron-Doped Graphene Nanoribbons. Does the Traditional Band Picture Correctly Describe the Electronic Structure of n-Doped Conjugated Polymers? A TD-DFT and Natural Transition Orbital Study. Determining the N-Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling. Host-Guest Binding Free Energies à la Carte: An Automated OneOPES Protocol. How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1