Effect of heat production on MHD natural convection transport of nanofluid flow via a vertical uniform perforated plate: An unsteady analysis

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-09-16 DOI:10.1016/j.ijft.2024.100868
{"title":"Effect of heat production on MHD natural convection transport of nanofluid flow via a vertical uniform perforated plate: An unsteady analysis","authors":"","doi":"10.1016/j.ijft.2024.100868","DOIUrl":null,"url":null,"abstract":"<div><div>This article statistically investigates the impact of heat production on the unstable MHD natural convection transport of nanofluid flow via a perforated sheet. The ordinary differential equations (ODEs) are derived from the partial differential equations (PDEs) by using of the similarity transformation. The dimensionless ordinary differential equations (ODEs) may be numerically resolved with the help of the MATLAB ODE45 tool and the finite difference method (FDM) along with the shooting strategy. Four innovative water-based nanofluids such as TiO<sub>2</sub>, Cu, Al<sub>2</sub>O<sub>3</sub>, and Ag are considered nanoparticles. The numerical results have been explained for the role of numerous non-dimensional numbers or parameters such as heat generation or absorption (Q), nanoparticle volume fraction (φ), Dufour number (Df), Prandtl number (Pr), magnetic force parameter (M), Soret number (Sr), and Schmidt number (<em>Sc</em>) on the fluid flow, and heat and mass transfer rates. The fluid temperature drops but velocity is enhanced for higher amounts of Q. Copper nanoparticle volume fraction up to 4 % shows a rise in temperature, concentration, and velocity curves. Heat transfer rate ( − θ′(0)) diminishes by about 124 %, while the values of f′(0) promote by approximately 26 % owing to an increase in the values of Q (heat generation) from 1.0 to 2.0. The value of ( − θ′(0)) increases by 49 %, but f′0 decreases by 15 % due to a rise in Q (heat absorption) from -3.0 to -10.0. The local skin friction coefficient (f′(0)) diminishes by about 65.21 % due to an increase in the values of the magnetic force parameter (M) from 0.5 to 3.5 whereas the rate of heat and mass transfer remain unchanged. As φ increased from 0.01 to 0.04, the local skin friction coefficient (f′(0)) exhibited a 36 % increase, while the heat transport rate (θ′(0)) decreased around by 10 %. In conclusion, a comparison was made between our findings and those of the published research. The comparison indicates a high degree of consistency.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724003094/pdfft?md5=6ea666e9b4b4623960c7e8378e59d54c&pid=1-s2.0-S2666202724003094-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article statistically investigates the impact of heat production on the unstable MHD natural convection transport of nanofluid flow via a perforated sheet. The ordinary differential equations (ODEs) are derived from the partial differential equations (PDEs) by using of the similarity transformation. The dimensionless ordinary differential equations (ODEs) may be numerically resolved with the help of the MATLAB ODE45 tool and the finite difference method (FDM) along with the shooting strategy. Four innovative water-based nanofluids such as TiO2, Cu, Al2O3, and Ag are considered nanoparticles. The numerical results have been explained for the role of numerous non-dimensional numbers or parameters such as heat generation or absorption (Q), nanoparticle volume fraction (φ), Dufour number (Df), Prandtl number (Pr), magnetic force parameter (M), Soret number (Sr), and Schmidt number (Sc) on the fluid flow, and heat and mass transfer rates. The fluid temperature drops but velocity is enhanced for higher amounts of Q. Copper nanoparticle volume fraction up to 4 % shows a rise in temperature, concentration, and velocity curves. Heat transfer rate ( − θ′(0)) diminishes by about 124 %, while the values of f′(0) promote by approximately 26 % owing to an increase in the values of Q (heat generation) from 1.0 to 2.0. The value of ( − θ′(0)) increases by 49 %, but f′0 decreases by 15 % due to a rise in Q (heat absorption) from -3.0 to -10.0. The local skin friction coefficient (f′(0)) diminishes by about 65.21 % due to an increase in the values of the magnetic force parameter (M) from 0.5 to 3.5 whereas the rate of heat and mass transfer remain unchanged. As φ increased from 0.01 to 0.04, the local skin friction coefficient (f′(0)) exhibited a 36 % increase, while the heat transport rate (θ′(0)) decreased around by 10 %. In conclusion, a comparison was made between our findings and those of the published research. The comparison indicates a high degree of consistency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热量产生对纳米流体流经垂直均匀穿孔板的 MHD 自然对流传输的影响:非稳态分析
本文从统计学角度研究了热量产生对纳米流体流经穿孔板的不稳定 MHD 自然对流传输的影响。通过相似性变换,从偏微分方程(PDE)导出常微分方程(ODE)。借助 MATLAB ODE45 工具和有限差分法(FDM)以及射击策略,可以对无量纲常微分方程(ODEs)进行数值求解。四种创新的水基纳米流体,如 TiO2、Cu、Al2O3 和 Ag 被视为纳米粒子。数值结果解释了许多非尺寸数或参数对流体流动、传热和传质速率的作用,如发热或吸热(Q)、纳米粒子体积分数(φ)、杜弗数(Df)、普朗特数(Pr)、磁力参数(M)、索雷特数(Sr)和施密特数(Sc)。纳米铜粒子的体积分数达到 4 % 时,温度、浓度和速度曲线都会上升。由于 Q 值(发热量)从 1.0 增加到 2.0,传热速率(-θ′(0))降低了约 124%,而 f′(0)值提高了约 26%。( - θ′(0))值增加了 49%,但由于 Q 值(吸热)从-3.0 增加到-10.0,f′0 下降了 15%。由于磁力参数 (M) 值从 0.5 增加到 3.5,局部表皮摩擦系数 (f′(0)) 减小了约 65.21%,而传热和传质速率保持不变。当 φ 从 0.01 增加到 0.04 时,局部表皮摩擦系数(f′(0))增加了 36%,而热传递速率(θ′(0))降低了约 10%。最后,对我们的研究结果和已发表的研究结果进行了比较。比较结果表明两者具有高度的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Optimized thermal pretreatment for lignocellulosic biomass of pigeon pea stalks to augment quality and quantity of biogas production Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance Thermodynamic and environmental comparative analysis of a dual loop ORC and Kalina as bottoming cycle of a solar Brayton sCO2 Simulation of flow dynamics and heat transfer behavior of nanofluid in microchannel with rough surfaces Thermo-hydraulic performance of concentric tube heat exchangers with turbulent flow: Predictive correlations and iterative methods for pumping power and heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1