Ultimatum bargaining: Algorithms vs. Humans

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-21 DOI:10.1016/j.econlet.2024.111979
Ali I. Ozkes , Nobuyuki Hanaki , Dieter Vanderelst , Jurgen Willems
{"title":"Ultimatum bargaining: Algorithms vs. Humans","authors":"Ali I. Ozkes ,&nbsp;Nobuyuki Hanaki ,&nbsp;Dieter Vanderelst ,&nbsp;Jurgen Willems","doi":"10.1016/j.econlet.2024.111979","DOIUrl":null,"url":null,"abstract":"<div><div>We study human behavior in ultimatum game when interacting with either human or algorithmic opponents. We examine how the type of the AI algorithm (mimicking human behavior, optimising gains, or providing no explanation) and the presence of a human beneficiary affect sending and accepting behaviors. Our experimental data reveal that subjects generally do not differentiate between human and algorithmic opponents, between different algorithms, and between an explained and unexplained algorithm. However, they are more willing to forgo higher payoffs when the algorithm’s earnings benefit a human.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"244 ","pages":"Article 111979"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165176524004634/pdfft?md5=7035d59c89d338f0eefef616934e5cf0&pid=1-s2.0-S0165176524004634-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176524004634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study human behavior in ultimatum game when interacting with either human or algorithmic opponents. We examine how the type of the AI algorithm (mimicking human behavior, optimising gains, or providing no explanation) and the presence of a human beneficiary affect sending and accepting behaviors. Our experimental data reveal that subjects generally do not differentiate between human and algorithmic opponents, between different algorithms, and between an explained and unexplained algorithm. However, they are more willing to forgo higher payoffs when the algorithm’s earnings benefit a human.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最后通牒谈判:算法与人类
我们研究了人类与人类或算法对手互动时在最后通牒博弈中的行为。我们研究了人工智能算法的类型(模仿人类行为、优化收益或不提供解释)和人类受益人的存在如何影响发送和接受行为。我们的实验数据显示,受试者一般不会区分人类对手和算法对手、不同算法、已解释算法和未解释算法。然而,当算法的收益有利于人类时,他们更愿意放弃更高的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1