Pascal Yiou , Robert Vautard , Yoann Robin , Nathalie de Noblet-Ducoudré , Fabio D’Andrea , Robin Noyelle
{"title":"How could 50 °C be reached in Paris: Analyzing the CMIP6 ensemble to design storylines for adaptation","authors":"Pascal Yiou , Robert Vautard , Yoann Robin , Nathalie de Noblet-Ducoudré , Fabio D’Andrea , Robin Noyelle","doi":"10.1016/j.cliser.2024.100518","DOIUrl":null,"url":null,"abstract":"<div><div>Reaching a surface temperature of 50 °C in a heavily populated region, like Paris, would have devastating effects. Although such a high value seems far from the present-day record of 42.6 °C, its occurrence cannot be dismissed by the end of the 21st century, due to the continuous increase of global mean temperature. In this paper, we address two questions that were asked by the City of Paris to a group of scientists: When does this event start to be likely? What are the prevailing meteorological conditions? We base our study on the CMIP6 simulation ensemble. Many of the CMIP6 yield biases in temperature. Rather than using methods of bias correction, which are not necessarily adapted to high extremes, we propose a pragmatic approach of model selection in order to seek such high temperature events that are deemed realistic. We analyze the meteorological conditions leading to first occurrences of such hot events and their common atmospheric patterns. This paper describes a simple data mining approach (on a large ensemble of climate model simulations) which could be adapted to other regions of the world, in order to help decision makers anticipating and adapting to such devastating meteorological events.</div></div>","PeriodicalId":51332,"journal":{"name":"Climate Services","volume":"36 ","pages":"Article 100518"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405880724000736/pdfft?md5=78f35562b2fc8ddfa43c0c2e1352fe83&pid=1-s2.0-S2405880724000736-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Services","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405880724000736","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reaching a surface temperature of 50 °C in a heavily populated region, like Paris, would have devastating effects. Although such a high value seems far from the present-day record of 42.6 °C, its occurrence cannot be dismissed by the end of the 21st century, due to the continuous increase of global mean temperature. In this paper, we address two questions that were asked by the City of Paris to a group of scientists: When does this event start to be likely? What are the prevailing meteorological conditions? We base our study on the CMIP6 simulation ensemble. Many of the CMIP6 yield biases in temperature. Rather than using methods of bias correction, which are not necessarily adapted to high extremes, we propose a pragmatic approach of model selection in order to seek such high temperature events that are deemed realistic. We analyze the meteorological conditions leading to first occurrences of such hot events and their common atmospheric patterns. This paper describes a simple data mining approach (on a large ensemble of climate model simulations) which could be adapted to other regions of the world, in order to help decision makers anticipating and adapting to such devastating meteorological events.
期刊介绍:
The journal Climate Services publishes research with a focus on science-based and user-specific climate information underpinning climate services, ultimately to assist society to adapt to climate change. Climate Services brings science and practice closer together. The journal addresses both researchers in the field of climate service research, and stakeholders and practitioners interested in or already applying climate services. It serves as a means of communication, dialogue and exchange between researchers and stakeholders. Climate services pioneers novel research areas that directly refer to how climate information can be applied in methodologies and tools for adaptation to climate change. It publishes best practice examples, case studies as well as theories, methods and data analysis with a clear connection to climate services. The focus of the published work is often multi-disciplinary, case-specific, tailored to specific sectors and strongly application-oriented. To offer a suitable outlet for such studies, Climate Services journal introduced a new section in the research article type. The research article contains a classical scientific part as well as a section with easily understandable practical implications for policy makers and practitioners. The journal''s focus is on the use and usability of climate information for adaptation purposes underpinning climate services.