Guanren Chen , Dongwei Li , Junhao Chen , Hao Chen , Jindong Wang , Zhiwen Jia , Qiao Sun , Minghai Xia
{"title":"Experimental analysis of the thermo-hydro-mechanical (THM) coupling in freezing vertical shafts of unsaturated sandy soil","authors":"Guanren Chen , Dongwei Li , Junhao Chen , Hao Chen , Jindong Wang , Zhiwen Jia , Qiao Sun , Minghai Xia","doi":"10.1016/j.coldregions.2024.104254","DOIUrl":null,"url":null,"abstract":"<div><div>The evolutionary mechanism of frozen soil involves complex dynamic coupling among temperature, moisture and the stress field. However, existing research has struggled to adequately describe the interplay between these factors. To address this, we independently designed and developed a multifunctional loading system appropriate for geotechnical engineering experimentation and a corresponding loading technology. Using a model of vertical shaft freezing, we studied the spatiotemporal evolution of thermo-hydro-mechanical (THM) multi-field coupling. The research findings indicate that, compared to the freezing interface, the main section experiences not only more intense variations in the temperature field but also heightened activity in terms of in-situ freezing and moisture migration. Both the radial and circumferential characteristic faces exhibit wave-like variations in moisture gradient evolution. The circumferential face features a critical gradient at 3.8 m<sup>−1</sup>, whereas the moisture gradient curve of the radial face undergoes temporal elongation at the peak, resulting in no discernible extremities. Each characteristic position of the frost heave force growth undergoes three distinct phases: incubation, rapid increase and stabilisation. During the same phases, the response times for the growth of frost heave forces on the radial characteristic face are roughly equivalent. However, when moving outward along the equivalent freezing radius, the response time on the circumferential face becomes progressively delayed.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"228 ","pages":"Article 104254"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001356","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionary mechanism of frozen soil involves complex dynamic coupling among temperature, moisture and the stress field. However, existing research has struggled to adequately describe the interplay between these factors. To address this, we independently designed and developed a multifunctional loading system appropriate for geotechnical engineering experimentation and a corresponding loading technology. Using a model of vertical shaft freezing, we studied the spatiotemporal evolution of thermo-hydro-mechanical (THM) multi-field coupling. The research findings indicate that, compared to the freezing interface, the main section experiences not only more intense variations in the temperature field but also heightened activity in terms of in-situ freezing and moisture migration. Both the radial and circumferential characteristic faces exhibit wave-like variations in moisture gradient evolution. The circumferential face features a critical gradient at 3.8 m−1, whereas the moisture gradient curve of the radial face undergoes temporal elongation at the peak, resulting in no discernible extremities. Each characteristic position of the frost heave force growth undergoes three distinct phases: incubation, rapid increase and stabilisation. During the same phases, the response times for the growth of frost heave forces on the radial characteristic face are roughly equivalent. However, when moving outward along the equivalent freezing radius, the response time on the circumferential face becomes progressively delayed.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.