Su Yang , Si-Ru Li , Si-Yuan Zhou , Hao-Ran Yang , Ling Xu , Gan-Ji Zhong , Jia-Zhuang Xu , Zhong-Ming Li , Xiao-Ming Tao , Yiu-Wing Mai
{"title":"Cold crystallization behavior of poly(lactic acid) induced by poly(ethylene glycol)-grafted graphene oxide: Crystallization kinetics and polymorphism","authors":"Su Yang , Si-Ru Li , Si-Yuan Zhou , Hao-Ran Yang , Ling Xu , Gan-Ji Zhong , Jia-Zhuang Xu , Zhong-Ming Li , Xiao-Ming Tao , Yiu-Wing Mai","doi":"10.1016/j.compscitech.2024.110871","DOIUrl":null,"url":null,"abstract":"<div><div>Cold crystallization between the glass transition and melt temperature is of particular significance for crystalline regulation due to the slow crystallization rate of poly(lactic acid<strong>) (</strong>PLA). Incorporation of nucleation agents can promote PLA crystallization by reducing the nucleation activation energy and offering nucleation sites. Herein, we investigated the cold crystallization behavior of PLA induced by poly(ethylene glycol)-grafted graphene oxide (PEGgGO) which was synthesized and identified as a powerful nucleation agent for melt crystallization. The obtained results showed that PEGgGO not only accelerated the cold crystallization kinetics of PLA, but also promoted the polymorphic transition kinetics during the heating process. The half crystallization time of PLA induced by PEGgGO was shortened by 51 % and the final crystallinity increased by 57 % compared to that induced by GO alone at the same loading of 0.5 wt%. In addition, relative to GO, PEGgGO enabled the α′-to-α phase transition kinetics of PLA by a reduced transition temperature range of 26 % due to its excellent nucleation ability even at cold crystallization. The flexible PEG chains on GO facilitated crystalline regulation of PLA owing to the improved chain mobility. This work provides a broader framework for fashioning semicrystalline PLA products with enhanced crystallinity and refined crystal structure towards prospective applications.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110871"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026635382400441X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Cold crystallization between the glass transition and melt temperature is of particular significance for crystalline regulation due to the slow crystallization rate of poly(lactic acid) (PLA). Incorporation of nucleation agents can promote PLA crystallization by reducing the nucleation activation energy and offering nucleation sites. Herein, we investigated the cold crystallization behavior of PLA induced by poly(ethylene glycol)-grafted graphene oxide (PEGgGO) which was synthesized and identified as a powerful nucleation agent for melt crystallization. The obtained results showed that PEGgGO not only accelerated the cold crystallization kinetics of PLA, but also promoted the polymorphic transition kinetics during the heating process. The half crystallization time of PLA induced by PEGgGO was shortened by 51 % and the final crystallinity increased by 57 % compared to that induced by GO alone at the same loading of 0.5 wt%. In addition, relative to GO, PEGgGO enabled the α′-to-α phase transition kinetics of PLA by a reduced transition temperature range of 26 % due to its excellent nucleation ability even at cold crystallization. The flexible PEG chains on GO facilitated crystalline regulation of PLA owing to the improved chain mobility. This work provides a broader framework for fashioning semicrystalline PLA products with enhanced crystallinity and refined crystal structure towards prospective applications.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.