Ruminant livestock TR V(D)J genes and CDR3 repertoire

IF 1.4 3区 农林科学 Q4 IMMUNOLOGY Veterinary immunology and immunopathology Pub Date : 2024-09-22 DOI:10.1016/j.vetimm.2024.110829
Fengli Wu , Yunlan Deng , Xinsheng Yao , Jun Li
{"title":"Ruminant livestock TR V(D)J genes and CDR3 repertoire","authors":"Fengli Wu ,&nbsp;Yunlan Deng ,&nbsp;Xinsheng Yao ,&nbsp;Jun Li","doi":"10.1016/j.vetimm.2024.110829","DOIUrl":null,"url":null,"abstract":"<div><div>Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.</div></div>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165242724001156","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反刍家畜 TR V(D)J 基因和 CDR3 基因库
反刍家畜表现出某些免疫特性,使其成为研究 T 细胞受体多样性和免疫反应的宝贵模型。这种抵抗力归功于它们发达的免疫系统,包括先天性和适应性两部分。在本综述中,我们将深入探讨反刍家畜免疫系统的复杂运作,重点是先天性免疫和适应性免疫。具体来说,我们将讨论牛和绵羊的 TR V(D)J 基因(包括 TRB、TRG 和 TRA/D 链)以及互补决定区 3 (CDR3) 基因库的特征,从而揭示这些物种 T 细胞受体(TCR)基因库的多样性和功能性。了解这些种系基因和 CDR3 基因库的不同特征对于揭示反刍家畜免疫反应的复杂性至关重要。最后,我们概述了这一领域的未来前景,强调了进一步研究的重要性,以加深我们对反刍家畜免疫及其在疾病管理、疫苗开发和育种策略中潜在应用的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.60%
发文量
79
审稿时长
70 days
期刊介绍: The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease. Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above. The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.
期刊最新文献
Efficacy of the H7N9 vaccine as a candidate for the Korean avian influenza antigen bank Development of bovine IgG3-specific assays using a novel recombinant single-domain binding reagent Editorial Board Solving technical issues in flow cytometry to characterize porcine CD8α/β expressing lymphocytes Expression of key immune genes in polarized porcine monocyte-derived macrophage subsets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1