{"title":"A mitochondria-targeted near-infrared fluorescent probe for pH monitoring in living cells based on the rhodamine-hemicyanine hybrid structure","authors":"Xin Ji, Qi Jin, Yongqin Shi, Xiao-Feng Yang","doi":"10.1016/j.dyepig.2024.112465","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial pH plays a crucial role in cellular metabolism and pathological conditions. Thus, tracking changes in mitochondrial pH is essential for understanding its impact on cellular processes. In this work, we report a mitochondria-targetable near-infrared pH-sensitive fluorescent probe, <strong>Rh-NorCy</strong>, based on the rhodamine-hemicyanine hybrid structure. <strong>Rh-NorCy</strong> contains a non-alkylated indolenine moiety as recognition site of pH and a triphenylphosphonium moiety as the mitochondria-targeting group. As the solution pH decreases from 9.1 to 5.8, the indolium N atom in the <strong>Rh-NorCy</strong> structure undergoes protonation, leading to a red shift of its maximum absorption wavelength from 568 nm to 709 nm and a significant fluorescence enhancement at 748 nm simultaneously. Importantly, <strong>Rh-NorCy</strong> exhibits a suitable p<em>K</em><sub>a</sub> (7.27) to map the pH variation in the mitochondria. <strong>Rh-NorCy</strong> demonstrates excellent photostability, minimal cytotoxicity, and strong mitochondria-targeting capability. It has been used to observe mitochondrial pH fluctuations during starvation and carbonylcyanide <em>m</em>-chlorophenylhydrazone (CCCP)-induced mitophagy.</div></div>","PeriodicalId":302,"journal":{"name":"Dyes and Pigments","volume":"232 ","pages":"Article 112465"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyes and Pigments","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014372082400531X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial pH plays a crucial role in cellular metabolism and pathological conditions. Thus, tracking changes in mitochondrial pH is essential for understanding its impact on cellular processes. In this work, we report a mitochondria-targetable near-infrared pH-sensitive fluorescent probe, Rh-NorCy, based on the rhodamine-hemicyanine hybrid structure. Rh-NorCy contains a non-alkylated indolenine moiety as recognition site of pH and a triphenylphosphonium moiety as the mitochondria-targeting group. As the solution pH decreases from 9.1 to 5.8, the indolium N atom in the Rh-NorCy structure undergoes protonation, leading to a red shift of its maximum absorption wavelength from 568 nm to 709 nm and a significant fluorescence enhancement at 748 nm simultaneously. Importantly, Rh-NorCy exhibits a suitable pKa (7.27) to map the pH variation in the mitochondria. Rh-NorCy demonstrates excellent photostability, minimal cytotoxicity, and strong mitochondria-targeting capability. It has been used to observe mitochondrial pH fluctuations during starvation and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced mitophagy.
期刊介绍:
Dyes and Pigments covers the scientific and technical aspects of the chemistry and physics of dyes, pigments and their intermediates. Emphasis is placed on the properties of the colouring matters themselves rather than on their applications or the system in which they may be applied.
Thus the journal accepts research and review papers on the synthesis of dyes, pigments and intermediates, their physical or chemical properties, e.g. spectroscopic, surface, solution or solid state characteristics, the physical aspects of their preparation, e.g. precipitation, nucleation and growth, crystal formation, liquid crystalline characteristics, their photochemical, ecological or biological properties and the relationship between colour and chemical constitution. However, papers are considered which deal with the more fundamental aspects of colourant application and of the interactions of colourants with substrates or media.
The journal will interest a wide variety of workers in a range of disciplines whose work involves dyes, pigments and their intermediates, and provides a platform for investigators with common interests but diverse fields of activity such as cosmetics, reprographics, dye and pigment synthesis, medical research, polymers, etc.