Tobias Prost , Toni Schulz , Sebastian Viehmann , Detlef H.G. Walde , Christian Koeberl
{"title":"Highly siderophile element and Re-Os isotope systematics of a Neoproterozoic Iron Formation and its temporal relation to glaciation events","authors":"Tobias Prost , Toni Schulz , Sebastian Viehmann , Detlef H.G. Walde , Christian Koeberl","doi":"10.1016/j.gca.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The Urucum iron- and manganese formation (IF-MnF) in the Santa Cruz Formation, Brazil, was deposited in a glacially influenced, late Neoproterozoic depositional environment. It has proven to be a reliable and robust archive for the late Neoproterozoic, allowing unique insights into the composition of seawater during an interval that is characterized by dramatic changes in the Earth’s litho-, hydros-, atmo-, and biosphere, including several episodes of low-latitude glaciations. Here we present highly siderophile element data of the Urucum IF-MnF to evaluate elemental sources that affected the Neoproterozoic seawater from which the Urucum IF-MnF precipitated. High uncertainties associated with current dating attempts of this formation overlapped with the Marinoan glaciation (∼650–635 Ma) as well as the Gaskiers glaciation event (∼580 Ma). A Re-Os regression line defined by iron-, manganese-, and chert-rich samples of the Urucum formation is interpreted as an isochron, yielding a refined age estimate of 577 ± 38 Ma and an initial <sup>187</sup>Os/<sup>188</sup>Os ratio of 0.122 ± 0.003. The proposed depositional age overlaps with previous published age data of the Urucum IF-MnF, but relates the Urucum IF-MnF to the Ediacaran Gaskiers glaciation and overlaps with the age of the Shuram CIE (∼567 Ma). An initial <sup>187</sup>Os/<sup>188</sup>Os ratio of 0.122 ± 0.003 is interpreted to represent pristine Neoproterozoic seawater and supports strong hydrothermal input, probably related to rifting, that promoted ferruginous conditions in the Urucum seawater.</div><div>In an alternative scenario, Re-Os isotope data for the Urucum IF-MnF could also be interpreted in a multi-component mixing scenario, defined by hydrothermally influenced water masses that sourced most metals within the Urucum basin and a crustal component that entered the Urucum seawater either as detrital admixture or via riverine loads. Although none of the scenarios can be ruled out, we consider the isochron scenario as more plausible.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"384 ","pages":"Pages 140-154"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016703724005003/pdfft?md5=173e4e92ca3048f71ecd519f5300819f&pid=1-s2.0-S0016703724005003-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724005003","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Urucum iron- and manganese formation (IF-MnF) in the Santa Cruz Formation, Brazil, was deposited in a glacially influenced, late Neoproterozoic depositional environment. It has proven to be a reliable and robust archive for the late Neoproterozoic, allowing unique insights into the composition of seawater during an interval that is characterized by dramatic changes in the Earth’s litho-, hydros-, atmo-, and biosphere, including several episodes of low-latitude glaciations. Here we present highly siderophile element data of the Urucum IF-MnF to evaluate elemental sources that affected the Neoproterozoic seawater from which the Urucum IF-MnF precipitated. High uncertainties associated with current dating attempts of this formation overlapped with the Marinoan glaciation (∼650–635 Ma) as well as the Gaskiers glaciation event (∼580 Ma). A Re-Os regression line defined by iron-, manganese-, and chert-rich samples of the Urucum formation is interpreted as an isochron, yielding a refined age estimate of 577 ± 38 Ma and an initial 187Os/188Os ratio of 0.122 ± 0.003. The proposed depositional age overlaps with previous published age data of the Urucum IF-MnF, but relates the Urucum IF-MnF to the Ediacaran Gaskiers glaciation and overlaps with the age of the Shuram CIE (∼567 Ma). An initial 187Os/188Os ratio of 0.122 ± 0.003 is interpreted to represent pristine Neoproterozoic seawater and supports strong hydrothermal input, probably related to rifting, that promoted ferruginous conditions in the Urucum seawater.
In an alternative scenario, Re-Os isotope data for the Urucum IF-MnF could also be interpreted in a multi-component mixing scenario, defined by hydrothermally influenced water masses that sourced most metals within the Urucum basin and a crustal component that entered the Urucum seawater either as detrital admixture or via riverine loads. Although none of the scenarios can be ruled out, we consider the isochron scenario as more plausible.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.