On energy-consistency principle of PFM for thermal fracturing in thermoviscoelasticity solids and its application for modeling thermal response due to crack growth based on adaptive mesh technique

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-09-23 DOI:10.1016/j.camwa.2024.09.016
Sayahdin Alfat
{"title":"On energy-consistency principle of PFM for thermal fracturing in thermoviscoelasticity solids and its application for modeling thermal response due to crack growth based on adaptive mesh technique","authors":"Sayahdin Alfat","doi":"10.1016/j.camwa.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>The study of thermal response in the crack tip due to crack growth is very important to study the material behavior. Actually, the thermal response in the crack tip is generated by the mechanical dissipation energy properties, e.g., the viscous energy dissipation in viscoelasticity solids. Therefore, we proposed the PFM for crack propagation in thermoviscoelasticity solids and demonstrated several numerical examples. Our present model is derived from the Francfort–Marigo energy with the Ambrosio–Tortorelli regularization, and thermal energy. Our study aims to numerically investigate the thermal response in materials due to crack growth using the proposed model. In the numerical method, we apply the adaptive finite element method because the mesh needs to be fine enough to capture the damage variable <em>z</em>. Several interesting numerical examples are demonstrated, such as Mode I crack propagation and scalar Mode III crack propagation in non-isothermal and adiabatic processes. Numerical experiments demonstrate the capability of the proposed model to capture the temperature increasing around crack tips which is consistent with the viewpoint of laboratory experiments in the literature.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004255","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The study of thermal response in the crack tip due to crack growth is very important to study the material behavior. Actually, the thermal response in the crack tip is generated by the mechanical dissipation energy properties, e.g., the viscous energy dissipation in viscoelasticity solids. Therefore, we proposed the PFM for crack propagation in thermoviscoelasticity solids and demonstrated several numerical examples. Our present model is derived from the Francfort–Marigo energy with the Ambrosio–Tortorelli regularization, and thermal energy. Our study aims to numerically investigate the thermal response in materials due to crack growth using the proposed model. In the numerical method, we apply the adaptive finite element method because the mesh needs to be fine enough to capture the damage variable z. Several interesting numerical examples are demonstrated, such as Mode I crack propagation and scalar Mode III crack propagation in non-isothermal and adiabatic processes. Numerical experiments demonstrate the capability of the proposed model to capture the temperature increasing around crack tips which is consistent with the viewpoint of laboratory experiments in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热弹性固体热断裂的 PFM 能量一致性原理及其在基于自适应网格技术的裂纹增长热响应建模中的应用
研究裂纹生长引起的裂纹尖端热响应对研究材料行为非常重要。实际上,裂纹尖端的热响应是由机械耗散能量特性产生的,例如粘弹性固体中的粘性能量耗散。因此,我们提出了热粘弹性固体中裂纹扩展的 PFM,并演示了几个数值实例。我们目前的模型是由带有 Ambrosio-Tortorelli 正则化的 Francfort-Marigo 能量和热能导出的。我们的研究旨在利用所提出的模型对裂缝生长引起的材料热响应进行数值研究。在数值方法中,我们采用了自适应有限元方法,因为网格需要足够精细才能捕捉到损伤变量 z。我们展示了几个有趣的数值示例,如非等温和绝热过程中的模式 I 裂纹扩展和标量模式 III 裂纹扩展。数值实验证明,所提出的模型能够捕捉裂纹尖端周围的温度上升,这与文献中实验室实验的观点一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry Topology optimization design of labyrinth seal-type devices considering subsonic compressible turbulent flow conditions An implementation of hp-FEM for the fractional Laplacian Modular parametric PGD enabling online solution of partial differential equations An implicit GNN solver for Poisson-like problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1