{"title":"Trihalomethanes in chlorinated drinking water: Seasonal variations and health risk assessment in southern Iran","authors":"Amin Mohammadpour , Zahra Emadi , Enayat Berizi , Azadeh Kazemi","doi":"10.1016/j.gsd.2024.101342","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing the adverse impacts of trihalomethanes, the most hazardous disinfection by-products, is crucial for community health protection. This study evaluated physicochemical parameters, trihalomethane levels, their prediction, and risk assessment using probability and Sobol analysis. Results indicated that electrical conductivity, total dissolved solids, nitrate, sulfate, calcium, lithium, total organic carbon, and ammonium exceeded permissible limits. Tribromomethane (0.14–3.21 μg/L in winter; 0.06–0.17 μg/L in summer), trichloromethane (1.90–3.53 μg/L in winter; 3.19–5.44 μg/L in summer), bromodichloromethane (0.62–4.24 μg/L in winter; 3.27–6.41 μg/L in summer), and dibromochloromethane (0.82–2.41 μg/L in winter; 0.69–3.03 μg/L in summer) remained within safe limits. Random Forest analysis identified total organic carbon as the most significant factor in trihalomethane production, with a positive correlation between trihalomethanes and bromide. Per the World Health Organization's risk assessment, trihalomethane concentrations posed no harm to residents (I<sub>WHO</sub><1). However, the United States Environmental Protection Agency's assessment indicated an acceptable low cancer risk (100% cumulative cancer risk for all groups). Additionally, nitrate and fluoride levels surpassed the standard limit, with hazard index above 1 in both seasons for residents. Monte Carlo simulations showed that the 95th percentile of residents faced non-carcinogenic (nitrate and fluoride). However, 100% of children and 99.98% of adults were exposed to an acceptable low carcinogenic risk for THMs. Factors like inhalation rate, body weight, and trihalomethane levels significantly impacted health risk. These findings highlight the necessity for continuous monitoring and effective water treatment to safeguard public health, promote clean water, and advance sustainable development, advocating for sustainable water management to tackle health risks from environmental pollutants like disinfection by-products.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101342"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the adverse impacts of trihalomethanes, the most hazardous disinfection by-products, is crucial for community health protection. This study evaluated physicochemical parameters, trihalomethane levels, their prediction, and risk assessment using probability and Sobol analysis. Results indicated that electrical conductivity, total dissolved solids, nitrate, sulfate, calcium, lithium, total organic carbon, and ammonium exceeded permissible limits. Tribromomethane (0.14–3.21 μg/L in winter; 0.06–0.17 μg/L in summer), trichloromethane (1.90–3.53 μg/L in winter; 3.19–5.44 μg/L in summer), bromodichloromethane (0.62–4.24 μg/L in winter; 3.27–6.41 μg/L in summer), and dibromochloromethane (0.82–2.41 μg/L in winter; 0.69–3.03 μg/L in summer) remained within safe limits. Random Forest analysis identified total organic carbon as the most significant factor in trihalomethane production, with a positive correlation between trihalomethanes and bromide. Per the World Health Organization's risk assessment, trihalomethane concentrations posed no harm to residents (IWHO<1). However, the United States Environmental Protection Agency's assessment indicated an acceptable low cancer risk (100% cumulative cancer risk for all groups). Additionally, nitrate and fluoride levels surpassed the standard limit, with hazard index above 1 in both seasons for residents. Monte Carlo simulations showed that the 95th percentile of residents faced non-carcinogenic (nitrate and fluoride). However, 100% of children and 99.98% of adults were exposed to an acceptable low carcinogenic risk for THMs. Factors like inhalation rate, body weight, and trihalomethane levels significantly impacted health risk. These findings highlight the necessity for continuous monitoring and effective water treatment to safeguard public health, promote clean water, and advance sustainable development, advocating for sustainable water management to tackle health risks from environmental pollutants like disinfection by-products.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.